TY - JOUR
T1 - Dosimetric considerations of 99mTc-MDP uptake within the epiphyseal plates of the long bones of pediatric patients
AU - Brown, Justin L.
AU - Sexton-Stallone, Briana
AU - Li, Ye
AU - Frey, Eric C.
AU - Treves, S. Ted
AU - Fahey, Frederic H.
AU - Plyku, Donika
AU - Cao, Xinhua
AU - Choi, Chansoo
AU - Kim, Chan Hyeong
AU - Sgouros, George
AU - Aris, John P.
AU - Bolch, Wesley E.
N1 - Publisher Copyright:
© 2020 Institute of Physics and Engineering in Medicine.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11/25
Y1 - 2020/11/25
N2 - Skeletal scintigraphy is most performed in pediatric patients using the radiopharmaceutical 99mTc labelled methylene diphosphonate (99mTc-MDP). Reference biokinetic models for 99mTc-MDP indicate 50% of the administered activity is uniformly localized to the interior bone surfaces (trabecular and cortical regions), yet imaging data clearly show some preferential uptake to the epiphyseal growth plates of the long bones. To explore the dosimetric consequences of these regional activity concentrations, we have modified mesh-type computational phantoms of the International Commission on Radiological Protection (ICRP) reference pediatric series to explicitly include geometric models of the epiphyseal growth plates (2 mm in thickness) within the left/right, distal/proximal ends of the humeri, radii, ulnae, femora, tibia, and fibulae. Bone mineral activity from the ICRP Publication 128 biokinetic model for 99mTc-MDP (ICRP 2015) was then partitioned to the growth plates at values of 0.5%, 4.4%, 8.3%, 12.2%, 16.1%, and 20%. Radiation transport simulations were performed to compute 99mTc S-values and organ dose coefficients to the soft tissues and to bone site-specific regions of spongiosa. As the percentage of bone activity assigned to the growth plates was increased (from 0.5% to 20%), absorbed doses to the soft tissue organs, active bone marrow, bone endosteum (BE), as well as the detriment-weighted dose, were shown to decrease from their nominal values (no substantial growth plate activity), while epiphyseal plate self-doses increased. In the 15 year old male phantom, moving from 0.5% to 20% relative bone activity within the epiphyseal plates resulted in a 15% reduction in active marrow (AM) and BE dose, a 10% reduction in mean soft tissue and detriment-weighted dose, and a 6.3-fold increase in epiphyseal plate self-dose. In the newborn female phantom, we observed a 18% decrease in AM and BE dose, a 10% decrease in mean soft tissue dose, a 15% decrease in detriment-weighted dose, and 12.8-fold increase in epiphyseal plate self-dose. Increases (to 3 mm) and decreases (to 1 mm) in the assumed growth plate thickness of our models were shown to impact only the growth plate self-dose. Future work in differential quantification of 99mTc-MDP activity-growth plates versus other bone surfaces-is required to provide clinically realistic data on activity partitioning as a function of patient age, and perhaps skeletal site. The phantom series presented here may be used to develop more optimized age-related guidance on 99mTc-MDP administered activities to children.
AB - Skeletal scintigraphy is most performed in pediatric patients using the radiopharmaceutical 99mTc labelled methylene diphosphonate (99mTc-MDP). Reference biokinetic models for 99mTc-MDP indicate 50% of the administered activity is uniformly localized to the interior bone surfaces (trabecular and cortical regions), yet imaging data clearly show some preferential uptake to the epiphyseal growth plates of the long bones. To explore the dosimetric consequences of these regional activity concentrations, we have modified mesh-type computational phantoms of the International Commission on Radiological Protection (ICRP) reference pediatric series to explicitly include geometric models of the epiphyseal growth plates (2 mm in thickness) within the left/right, distal/proximal ends of the humeri, radii, ulnae, femora, tibia, and fibulae. Bone mineral activity from the ICRP Publication 128 biokinetic model for 99mTc-MDP (ICRP 2015) was then partitioned to the growth plates at values of 0.5%, 4.4%, 8.3%, 12.2%, 16.1%, and 20%. Radiation transport simulations were performed to compute 99mTc S-values and organ dose coefficients to the soft tissues and to bone site-specific regions of spongiosa. As the percentage of bone activity assigned to the growth plates was increased (from 0.5% to 20%), absorbed doses to the soft tissue organs, active bone marrow, bone endosteum (BE), as well as the detriment-weighted dose, were shown to decrease from their nominal values (no substantial growth plate activity), while epiphyseal plate self-doses increased. In the 15 year old male phantom, moving from 0.5% to 20% relative bone activity within the epiphyseal plates resulted in a 15% reduction in active marrow (AM) and BE dose, a 10% reduction in mean soft tissue and detriment-weighted dose, and a 6.3-fold increase in epiphyseal plate self-dose. In the newborn female phantom, we observed a 18% decrease in AM and BE dose, a 10% decrease in mean soft tissue dose, a 15% decrease in detriment-weighted dose, and 12.8-fold increase in epiphyseal plate self-dose. Increases (to 3 mm) and decreases (to 1 mm) in the assumed growth plate thickness of our models were shown to impact only the growth plate self-dose. Future work in differential quantification of 99mTc-MDP activity-growth plates versus other bone surfaces-is required to provide clinically realistic data on activity partitioning as a function of patient age, and perhaps skeletal site. The phantom series presented here may be used to develop more optimized age-related guidance on 99mTc-MDP administered activities to children.
KW - Administered activity guidelines
KW - Computational phantoms
KW - Dose reduction/optimization
KW - Epiphyseal growth plates
KW - Organ dosimetry
KW - Skeletal scintigraphy
KW - Tc-99m MDP
UR - http://www.scopus.com/inward/record.url?scp=85097960728&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097960728&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/abb1db
DO - 10.1088/1361-6560/abb1db
M3 - Article
C2 - 33263312
AN - SCOPUS:85097960728
VL - 65
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
SN - 0031-9155
IS - 23
M1 - 235025
ER -