Dosimetric analysis of 123I, 125I and 131I in thyroid follicle models

Nils Anders Mauritz Josefsson, Eva Forssell-Aronsson

Research output: Contribution to journalArticle

Abstract

Background: Radioiodine is routinely used or proposed for diagnostic and therapeutic purposes: 123I, 125I and 131I for diagnostics and 125I and 131I for therapy. When radioiodine-labelled pharmaceuticals are administered to the body, radioiodide might be released into the circulation and taken up by the thyroid gland, which may then be an organ at risk. The aim of this study was to compare dosimetric properties for 123I, 125I and 131I in previously developed thyroid models for man, rat and mouse. Methods: Dosimetric calculations were performed using the Monte Carlo code MCNPX 2.6.0 and nuclear decay data from ICRP 107. Only the non-radiative transitions in the decays were considered. The S value was determined for the cell nuclei in species-specific thyroid follicle models for mouse, rat and man for different spatial distributions of radioiodine. Results: For the species-specific single follicle models with radioiodine homogeneously within the follicle lumen, the highest S value came from 131I, with the largest contribution from the β particles. When radioiodine was homogeneously distributed within the follicle cells or the follicle cell nucleus, the highest contribution originated from 125I, about two times higher than 123I, with the largest contribution from the Auger electrons. The mean absorbed dose calculated for our human thyroid multiple follicle model, assuming homogenous distribution of for 123I, 125I, or 131I within the follicle lumens and follicle cells, was 9%, 18% and 4% higher, respectively, compared with the mean absorbed dose according to Medical Internal Radiation Dose (MIRD) formalism and nuclear decay data. When radioiodine was homogeneously distributed in the follicle lumens, our calculations gave up to 90% lower mean absorbed dose for 125I compared to MIRD (20% lower for 123I, and 2% lower for 131I). Conclusions: This study clearly demonstrates the importance of using more detailed dosimetric methods and models than MIRD formalism for radioiodine, especially 123I and 125I, in the thyroid. For radioiodine homogeneously distributed in the follicle lumens our calculations for the human multiple follicle models gave up to 90% lower mean absorbed dose compared with MIRD formalism.

Original languageEnglish (US)
Article number23
Pages (from-to)1-12
Number of pages12
JournalEJNMMI Research
Volume4
Issue number1
DOIs
StatePublished - Jun 11 2014
Externally publishedYes

Fingerprint

Thyroid Gland
Radiation
Cell Nucleus
Radioactivity
Organs at Risk
Electrons
Therapeutics
Pharmaceutical Preparations

Keywords

  • Man
  • MCNPX
  • MIRD
  • Monte Carlo
  • Mouse
  • Rat
  • S value
  • Thyroid gland

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this

Dosimetric analysis of 123I, 125I and 131I in thyroid follicle models. / Josefsson, Nils Anders Mauritz; Forssell-Aronsson, Eva.

In: EJNMMI Research, Vol. 4, No. 1, 23, 11.06.2014, p. 1-12.

Research output: Contribution to journalArticle

@article{ca0e9e739db14c4d9ce9efb140f429e5,
title = "Dosimetric analysis of 123I, 125I and 131I in thyroid follicle models",
abstract = "Background: Radioiodine is routinely used or proposed for diagnostic and therapeutic purposes: 123I, 125I and 131I for diagnostics and 125I and 131I for therapy. When radioiodine-labelled pharmaceuticals are administered to the body, radioiodide might be released into the circulation and taken up by the thyroid gland, which may then be an organ at risk. The aim of this study was to compare dosimetric properties for 123I, 125I and 131I in previously developed thyroid models for man, rat and mouse. Methods: Dosimetric calculations were performed using the Monte Carlo code MCNPX 2.6.0 and nuclear decay data from ICRP 107. Only the non-radiative transitions in the decays were considered. The S value was determined for the cell nuclei in species-specific thyroid follicle models for mouse, rat and man for different spatial distributions of radioiodine. Results: For the species-specific single follicle models with radioiodine homogeneously within the follicle lumen, the highest S value came from 131I, with the largest contribution from the β particles. When radioiodine was homogeneously distributed within the follicle cells or the follicle cell nucleus, the highest contribution originated from 125I, about two times higher than 123I, with the largest contribution from the Auger electrons. The mean absorbed dose calculated for our human thyroid multiple follicle model, assuming homogenous distribution of for 123I, 125I, or 131I within the follicle lumens and follicle cells, was 9{\%}, 18{\%} and 4{\%} higher, respectively, compared with the mean absorbed dose according to Medical Internal Radiation Dose (MIRD) formalism and nuclear decay data. When radioiodine was homogeneously distributed in the follicle lumens, our calculations gave up to 90{\%} lower mean absorbed dose for 125I compared to MIRD (20{\%} lower for 123I, and 2{\%} lower for 131I). Conclusions: This study clearly demonstrates the importance of using more detailed dosimetric methods and models than MIRD formalism for radioiodine, especially 123I and 125I, in the thyroid. For radioiodine homogeneously distributed in the follicle lumens our calculations for the human multiple follicle models gave up to 90{\%} lower mean absorbed dose compared with MIRD formalism.",
keywords = "Man, MCNPX, MIRD, Monte Carlo, Mouse, Rat, S value, Thyroid gland",
author = "Josefsson, {Nils Anders Mauritz} and Eva Forssell-Aronsson",
year = "2014",
month = "6",
day = "11",
doi = "10.1186/s13550-014-0023-9",
language = "English (US)",
volume = "4",
pages = "1--12",
journal = "EJNMMI Research",
issn = "2191-219X",
publisher = "Springer Berlin",
number = "1",

}

TY - JOUR

T1 - Dosimetric analysis of 123I, 125I and 131I in thyroid follicle models

AU - Josefsson, Nils Anders Mauritz

AU - Forssell-Aronsson, Eva

PY - 2014/6/11

Y1 - 2014/6/11

N2 - Background: Radioiodine is routinely used or proposed for diagnostic and therapeutic purposes: 123I, 125I and 131I for diagnostics and 125I and 131I for therapy. When radioiodine-labelled pharmaceuticals are administered to the body, radioiodide might be released into the circulation and taken up by the thyroid gland, which may then be an organ at risk. The aim of this study was to compare dosimetric properties for 123I, 125I and 131I in previously developed thyroid models for man, rat and mouse. Methods: Dosimetric calculations were performed using the Monte Carlo code MCNPX 2.6.0 and nuclear decay data from ICRP 107. Only the non-radiative transitions in the decays were considered. The S value was determined for the cell nuclei in species-specific thyroid follicle models for mouse, rat and man for different spatial distributions of radioiodine. Results: For the species-specific single follicle models with radioiodine homogeneously within the follicle lumen, the highest S value came from 131I, with the largest contribution from the β particles. When radioiodine was homogeneously distributed within the follicle cells or the follicle cell nucleus, the highest contribution originated from 125I, about two times higher than 123I, with the largest contribution from the Auger electrons. The mean absorbed dose calculated for our human thyroid multiple follicle model, assuming homogenous distribution of for 123I, 125I, or 131I within the follicle lumens and follicle cells, was 9%, 18% and 4% higher, respectively, compared with the mean absorbed dose according to Medical Internal Radiation Dose (MIRD) formalism and nuclear decay data. When radioiodine was homogeneously distributed in the follicle lumens, our calculations gave up to 90% lower mean absorbed dose for 125I compared to MIRD (20% lower for 123I, and 2% lower for 131I). Conclusions: This study clearly demonstrates the importance of using more detailed dosimetric methods and models than MIRD formalism for radioiodine, especially 123I and 125I, in the thyroid. For radioiodine homogeneously distributed in the follicle lumens our calculations for the human multiple follicle models gave up to 90% lower mean absorbed dose compared with MIRD formalism.

AB - Background: Radioiodine is routinely used or proposed for diagnostic and therapeutic purposes: 123I, 125I and 131I for diagnostics and 125I and 131I for therapy. When radioiodine-labelled pharmaceuticals are administered to the body, radioiodide might be released into the circulation and taken up by the thyroid gland, which may then be an organ at risk. The aim of this study was to compare dosimetric properties for 123I, 125I and 131I in previously developed thyroid models for man, rat and mouse. Methods: Dosimetric calculations were performed using the Monte Carlo code MCNPX 2.6.0 and nuclear decay data from ICRP 107. Only the non-radiative transitions in the decays were considered. The S value was determined for the cell nuclei in species-specific thyroid follicle models for mouse, rat and man for different spatial distributions of radioiodine. Results: For the species-specific single follicle models with radioiodine homogeneously within the follicle lumen, the highest S value came from 131I, with the largest contribution from the β particles. When radioiodine was homogeneously distributed within the follicle cells or the follicle cell nucleus, the highest contribution originated from 125I, about two times higher than 123I, with the largest contribution from the Auger electrons. The mean absorbed dose calculated for our human thyroid multiple follicle model, assuming homogenous distribution of for 123I, 125I, or 131I within the follicle lumens and follicle cells, was 9%, 18% and 4% higher, respectively, compared with the mean absorbed dose according to Medical Internal Radiation Dose (MIRD) formalism and nuclear decay data. When radioiodine was homogeneously distributed in the follicle lumens, our calculations gave up to 90% lower mean absorbed dose for 125I compared to MIRD (20% lower for 123I, and 2% lower for 131I). Conclusions: This study clearly demonstrates the importance of using more detailed dosimetric methods and models than MIRD formalism for radioiodine, especially 123I and 125I, in the thyroid. For radioiodine homogeneously distributed in the follicle lumens our calculations for the human multiple follicle models gave up to 90% lower mean absorbed dose compared with MIRD formalism.

KW - Man

KW - MCNPX

KW - MIRD

KW - Monte Carlo

KW - Mouse

KW - Rat

KW - S value

KW - Thyroid gland

UR - http://www.scopus.com/inward/record.url?scp=84903401587&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903401587&partnerID=8YFLogxK

U2 - 10.1186/s13550-014-0023-9

DO - 10.1186/s13550-014-0023-9

M3 - Article

AN - SCOPUS:84903401587

VL - 4

SP - 1

EP - 12

JO - EJNMMI Research

JF - EJNMMI Research

SN - 2191-219X

IS - 1

M1 - 23

ER -