Dissociating task acquisition from expression during learning reveals latent knowledge

Kishore V. Kuchibhotla, Tom Hindmarsh Sten, Eleni S. Papadoyannis, Sarah Elnozahy, Kelly A. Fogelson, Rupesh Kumar, Yves Boubenec, Peter C. Holland, Srdjan Ostojic, Robert C. Froemke

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Performance on cognitive tasks during learning is used to measure knowledge, yet it remains controversial since such testing is susceptible to contextual factors. To what extent does performance during learning depend on the testing context, rather than underlying knowledge? We trained mice, rats and ferrets on a range of tasks to examine how testing context impacts the acquisition of knowledge versus its expression. We interleaved reinforced trials with probe trials in which we omitted reinforcement. Across tasks, each animal species performed remarkably better in probe trials during learning and inter-animal variability was strikingly reduced. Reinforcement feedback is thus critical for learning-related behavioral improvements but, paradoxically masks the expression of underlying knowledge. We capture these results with a network model in which learning occurs during reinforced trials while context modulates only the read-out parameters. Probing learning by omitting reinforcement thus uncovers latent knowledge and identifies context- not “smartness”- as the major source of individual variability.

Original languageEnglish (US)
Article number2151
JournalNature communications
Issue number1
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • General
  • Physics and Astronomy(all)


Dive into the research topics of 'Dissociating task acquisition from expression during learning reveals latent knowledge'. Together they form a unique fingerprint.

Cite this