Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: Implications for synaptic plasticity and excitotoxic neuronal death

Chengbiao Lu, Weiming Fu, Guy S. Salvesen, Mark P. Mattson

Research output: Contribution to journalArticle

Abstract

Cysteine proteases of the caspase family play central roles in excecuting the cell death process in neurons during development of the nervous system and in neurodegenerative disorders. Recent findings suggest that caspases may also play roles in modulating neuronal plasticity in the absence of cell death. We previously reported that caspases can be activated in dendrites and synapses in response to activation of glutamate receptors. In the present study we demonstrate that the GluR1 subunit of the AMPA subtype of glutamate receptor is directly cleaved by caspase-3, and provide evidence that the cleavage of this subunit modulates neuronal excitability in ways that suggest important roles for caspases in regulating synaptic plasticity and cell survival. Whole-cell patch-clamp recordings in cultured rat hippocampal neurons showed that caspase activation in response to apoptotic stimuli selectively decreases AMPA channel activity without decreasing NMDA channel activity. Perfusion of neurons with recombinant caspase-3 resulted in a decreased AMPA current, demonstrating that caspase-3 activity is sufficient to suppress neuronal responses to glutamate. Exposure of radiolabeled GluR1 to recombinant caspase-3 resulted in cleavage of GluR1, demonstrating that this glutamate receptor protein is a direct substrate of this caspase. Our findings suggest roles for caspases in the modulation of neuronal excitability in physiological settings, and also identify a mechanism whereby caspases ensure that neurons die by apoptosis rather than excitotoxic necrosis in developmental and pathological settings.

Original languageEnglish (US)
Pages (from-to)69-79
Number of pages11
JournalNeuroMolecular Medicine
Volume1
Issue number1
DOIs
StatePublished - 2002

Keywords

  • Apoptosis
  • Calcium
  • Learning and memory
  • Neurotrophic factor
  • NMDA
  • Patch clamp
  • Staurosporine

ASJC Scopus subject areas

  • Neuroscience(all)
  • Genetics
  • Cell Biology

Fingerprint Dive into the research topics of 'Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: Implications for synaptic plasticity and excitotoxic neuronal death'. Together they form a unique fingerprint.

  • Cite this