Digital topology in brain imaging

Dzung Pham, Pierre Louis Bazin, Jerry Prince

Research output: Contribution to journalArticlepeer-review

Abstract

Modeling topology in medical image processing algorithms has emerged as a powerful technique for computing structural representations that are consistent with the underlying anatomy. When applied to high resolution images of the brain, these methods have proven to be extremely beneficial to neuroscientific studies in generating mathematical representations of the cerebral cortex and other brain structures, improving the analysis and visualization of functional activity, and allowing for group comparisons of brain geometry. Topological properties help model the global connectivity of structures without placing a bias on shape. In addition to providing anatomical consistency, topology-preserving algorithms also exhibit an improved robustness to noise. We provide an introduction to the main concepts in digital topology on which these algorithms are based and review their use in the segmentation of magnetic resonance (MR) brain images.

Original languageEnglish (US)
Article number5484158
Pages (from-to)51-59
Number of pages9
JournalIEEE Signal Processing Magazine
Volume27
Issue number4
DOIs
StatePublished - Jul 2010

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Signal Processing
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Digital topology in brain imaging'. Together they form a unique fingerprint.

Cite this