TY - JOUR
T1 - Differentiation of neurons restricts arbovirus replication and increases expression of the alpha isoform of IRF-7
AU - Schultz, Kimberly L.W.
AU - Vernon, Patty S.
AU - Griffin, Diane E.
N1 - Publisher Copyright:
© 2015, American Society for Microbiology.
PY - 2015
Y1 - 2015
N2 - Susceptibility to alphavirus infection is age dependent, and host maturation is associated with decreased virus replication and less severe encephalitis. To identify factors associated with maturation-dependent restriction of virus replication, we studied AP-7 rat olfactory bulb neuronal cells, which can differentiate in vitro. Differentiation was associated with a 150- to 1,000-fold decrease in replication of the alphaviruses Sindbis virus and Venezuelan equine encephalitis virus, as well as La Crosse bunyavirus. Differentiation delayed synthesis of SINV RNA and protein but did not alter the susceptibility of neurons to infection or virion maturation. Additionally, differentiation slowed virus-induced translation arrest and death of infected cells. Differentiation of uninfected AP-7 neurons was associated with changes in expression of antiviral genes. Expression of key transcription factors was increased, including interferon regulatory factor 3 and 7 (IRF-3 and IRF-7) and STAT-1, suggesting that neuronal maturation may enhance the capacity for antiviral signaling upon infection. IRF-7 produced by undifferentiated AP-7 neurons was exclusively the short dominant negative γ-isoform, while that produced by differentiated neurons was the full-length α-isoform. A similar switch in IRF-7 isoforms also occurred in the brains of maturing C57BL/6J mice. Silencing of IRF expression did not improve virus multiplication in differentiated neurons. Therefore, neuronal differentiation is associated with upregulation of transcription factors that activate antiviral signaling, but this alone does not account for maturation-dependent restriction of virus replication.
AB - Susceptibility to alphavirus infection is age dependent, and host maturation is associated with decreased virus replication and less severe encephalitis. To identify factors associated with maturation-dependent restriction of virus replication, we studied AP-7 rat olfactory bulb neuronal cells, which can differentiate in vitro. Differentiation was associated with a 150- to 1,000-fold decrease in replication of the alphaviruses Sindbis virus and Venezuelan equine encephalitis virus, as well as La Crosse bunyavirus. Differentiation delayed synthesis of SINV RNA and protein but did not alter the susceptibility of neurons to infection or virion maturation. Additionally, differentiation slowed virus-induced translation arrest and death of infected cells. Differentiation of uninfected AP-7 neurons was associated with changes in expression of antiviral genes. Expression of key transcription factors was increased, including interferon regulatory factor 3 and 7 (IRF-3 and IRF-7) and STAT-1, suggesting that neuronal maturation may enhance the capacity for antiviral signaling upon infection. IRF-7 produced by undifferentiated AP-7 neurons was exclusively the short dominant negative γ-isoform, while that produced by differentiated neurons was the full-length α-isoform. A similar switch in IRF-7 isoforms also occurred in the brains of maturing C57BL/6J mice. Silencing of IRF expression did not improve virus multiplication in differentiated neurons. Therefore, neuronal differentiation is associated with upregulation of transcription factors that activate antiviral signaling, but this alone does not account for maturation-dependent restriction of virus replication.
UR - http://www.scopus.com/inward/record.url?scp=84919459222&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84919459222&partnerID=8YFLogxK
U2 - 10.1128/JVI.02394-14
DO - 10.1128/JVI.02394-14
M3 - Article
C2 - 25320290
AN - SCOPUS:84919459222
SN - 0022-538X
VL - 89
SP - 48
EP - 60
JO - Journal of Virology
JF - Journal of Virology
IS - 1
ER -