Differential X reactivation in human placental cells: Implications for reversal of X inactivation

Barbara R Migeon, Joyce Axelman, Peter Jeppesen

Research output: Contribution to journalArticle


X inactivation-the mammalian method of X chromosome dosage compensation-is extremely stable in human somatic cells; only fetal germ cells have a developmental program to reverse the process. The human placenta, at term, differs from other somatic tissues, since it has the ability to reverse the X-inactivation program. To determine whether reversal can be induced at other stages of placental development, we examined earlier placental specimens using a cell-hybridization assay. We found that global X reactivation is also inducible in villi cells from first-trimester spontaneous abortions but not from first-trimester elective terminations. These differences in inducibility are not associated with detectable variation in histone H4 acetylation, DNA methylation, or XIST expression-hallmarks of the inactivation process-so other factors must have a role. One notable feature is that the permissive cells, unlike nonpermissive ones, have ceased to proliferate in vivo and are either beginning or in the process of programmed cell death. Cessation of mitotic proliferation also characterizes oocytes at the stage at which they undergo X reactivation. We suggest that, along with undermethylation, the apoptotic changes accompanying cessation of cell proliferation contribute to the reversal of inactivation, not only in placental cells, but also in oocytes entering meiosis.

Original languageEnglish (US)
Pages (from-to)355-364
Number of pages10
JournalAmerican Journal of Human Genetics
Issue number3
Publication statusPublished - Sep 2005


ASJC Scopus subject areas

  • Genetics

Cite this