Differential susceptibility of isolated mouse retinal neurons and photoreceptors to kainic acid toxicity. In vitro studies

L. Abrams, L. E. Politi, R. Adler

Research output: Contribution to journalArticle

Abstract

Dissociated cultures of mouse retinal neurons and photoreceptors in chemically defined medium were used to investigate the susceptibility of these cells to the neurotoxin kainic acid (KA). Cells isolated from the newborn mouse retina were initially insensitive to this toxin, and the cells that differentiated as rod photoreceptors retained this resistance throughout the culture period. However, amacrine neurons became increasingly sensitive to KA toxicity as they differentiated in culture; after the fifth day in vitro approximately 90% of these cells were killed by KA in a concentration- and time-dependent fashion. The neurons showed pronounced swelling within 10 min of treatment onset, and cell lysis and nuclear fragmentation were evident during the next few hours. KA-induced degeneration of these neurons was corroborated using the amacrine cell-specific monoclonal antibody HPC-1, as well as autoradiographic and biochemical determinations of the high affinity uptake for GABA. This inhibitory neurotransmitter was taken up by amacrine neurons but not by photoreceptor cells, and this uptake was completely abolished in KA-treated cultures. Similar results were obtained with the neuronal enzyme choline acetyltransferase. However, both photoreceptor survival and the expression of photoreceptor markers such as opsin and the retinoid-binding protein interphotoreceptor (IRBP) were similar in KA-treated and control cultures. Similarly, the high affinity uptake of glutamate, an excitatory amino acid which is predominantly taken up by photoreceptors, showed only modest changes in KA-treated cultures. Thus, chemically defined cultures of mouse retinal cells offer a suitable system for the investigation of mechanisms involved in specific KA toxicity, and should facilitate the search for treatments which could prevent these neurotoxic effects. Moreover, KA may serve as a useful tool for the generation of enriched populations of developing mouse rod photoreceptors by selective neuronal destruction.

Original languageEnglish (US)
Pages (from-to)2300-2308
Number of pages9
JournalInvestigative Ophthalmology and Visual Science
Volume30
Issue number11
StatePublished - Jan 1 1989

    Fingerprint

Keywords

  • Kainic acid
  • Mouse retina
  • Neurotransmitters
  • Photoreceptors
  • Purified cultures
  • Retina neurons

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Cite this