Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro

Masaaki Yamamoto, Sanjeeva Mohanam, Raymond Sawaya, Gregory N. Fuller, Motoharu Seiki, Hiroshi Sato, Ziya L. Gokaslan, Lance A. Liotta, Garth L. Nicolson, Jasti S. Rao

Research output: Contribution to journalArticlepeer-review

262 Scopus citations

Abstract

In this study, we investigated the expression of activated gelatinase A and membrane-type metalloproteinase (MT-MMP) induced by concanavalin A (ConA) in four highly invasive glioma cell lines (UWR2, UWR3, U251MG, and SNB-19). We also examined gelatinase A and MT-MMP expression in human brain tumor tissues in vivo. Gelatin zymography showed that all four cell lines expressed latent progelatinase A (M(r) 66,000). Activated gelatinase A (M(r) 62,000) was induced by ConA in only UWR2 or UWR3 cells. MT-MMP mRNA was present in all four cell lines prior to ConA treatment, and the relative hybridization signals were 1,0.80, 0.25, and 0.15 in UWR2, UWR3, U251MG, and SNB-19 cells, respectively. These mRNA signals were dramatically increased (2.8-, 5.4-, and 2.2-fold in UWR2, UWR3, and U251MG cells, respectively) following ConA treatment; however, MT-MMP mRNA expression was unchanged in SNB-19 cells. MT- MMP protein was detected in various amounts in the four cell lines, but only after ConA pretreatment. The amount of MT-MMP mRNA was unchanged in SNB-19 after ConA treatment, and the MT-MMP mRNA level in ConA-treated U251MG was lower than in LWR2 and UWR3 without ConA treatment. MT-MMP protein was detected in SNB-19 and U251 cell lines only after ConA treatment. Gelatin zymography of human brain tumor tissues revealed that almost all samples examined contained a latent form of gelatinase A, whereas the activated form of gelatinase A was only seen in metastatic lung adenocarcinomas and malignant astrocytomas, and especially in glioblastomas. MT-MMP mRNA levels were significantly higher in malignant astrocytomas than in low-grade gliomas and normal brain tissues. These results were confirmed by PCR analysis, which showed that MT-MMP mRNA was absent or barely detectable in normal brain white matter but was easily detectable in malignant astrocytomas. Immunohistochemistry of MT-MMP in frozen sections showed that MT-MMP was localized in neoplastic astrocytes of malignant astrocytomas but was undetectable in normal white brain matter. The data indicate that MT-MMP is present in malignant human glial tumors and thai MT-MMP expression correlates with expression and activation of gelatinase A during malignant progression in vivo. A direct correlation between the levels of MT-MMP protein and its transcripts was not found in vitro, suggesting that MT-MMP expression in glioma cell lines might be regulated either at the level of transcription message stability or at posttranscription. Altered MT-MMP expression might contribute, in part, to gelatinase A activation, which in turn facilitates invasion of these tumors.

Original languageEnglish (US)
Pages (from-to)384-392
Number of pages9
JournalCancer Research
Volume56
Issue number2
StatePublished - Jan 15 1996
Externally publishedYes

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro'. Together they form a unique fingerprint.

Cite this