Diagnosis and management of familial dyslipoproteinemias.

Peter O. Kwiterovich

Research output: Contribution to journalArticle

Abstract

The three major pathways of lipoprotein metabolism provide a superb paradigm to delineate systematically the familial dyslipoproteinemias. Such understanding leads to improved diagnosis and treatment of patients. In the exogenous (intestinal) pathway, defects in LPL, apoC-II, APOA-V, and GPIHBP1 disrupt the catabolism of chylomicrons and hepatic uptake of their remnants, producing very high TG. In the endogenous (hepatic) pathway, six disorders affect the activity of the LDLR and markedly increase LDL. These include FH, FDB, ARH, PCSK9 gain-of-function mutations, sitosterolemia and loss of 7 alpha hydroxylase. Hepatic overproduction of VLDL occurs in FCHL, hyperapoB, LDL subclass pattern B, FDH and syndrome X, often due to insulin resistance and resulting in high TG, elevated small LDL particles and low HDL-C. Defects in APOB-100 and loss-of-function mutations in PCSK9 are associated with low LDL-C, decreased CVD and longevity. An absence of MTP leads to marked reduction in chylomicrons and VLDL, causing abetalipoproteinemia. In the reverse cholesterol pathway, deletions or nonsense mutations in apoA-I or ABCA1 transporter disrupt the formation of the nascent HDL particle. Mutations in LCAT disrupt esterification of cholesterol in nascent HDL by LCAT and apoA-1, and formation of spherical HDL. Mutations in either CETP or SR-B1 and familial high HDL lead to increased large HDL particles, the effect of which on CVD is not resolved. The major goal is to prevent or ameliorate the major complications of many familial dyslipoproteinemias, namely, premature CVD or pancreatitis. Dietary and drug treatment specific for each inherited disorder is reviewed.

Original languageEnglish (US)
Pages (from-to)371
Number of pages1
JournalCurrent Cardiology Reports
Volume15
Issue number6
DOIs
StatePublished - Jun 2013

Fingerprint

Dyslipidemias
Pre-beta High-Density Lipoprotein
Chylomicrons
Mutation
Apolipoprotein A-I
Liver
Abetalipoproteinemia
Cholesterol
Apolipoproteins C
Nonsense Codon
Sequence Deletion
Esterification
Pancreatitis
Lipoproteins
Insulin Resistance
oxidized low density lipoprotein
Therapeutics
Pharmaceutical Preparations

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Cite this

Diagnosis and management of familial dyslipoproteinemias. / Kwiterovich, Peter O.

In: Current Cardiology Reports, Vol. 15, No. 6, 06.2013, p. 371.

Research output: Contribution to journalArticle

Kwiterovich, Peter O. / Diagnosis and management of familial dyslipoproteinemias. In: Current Cardiology Reports. 2013 ; Vol. 15, No. 6. pp. 371.
@article{a853dce5c77040b68812b35e0774c70e,
title = "Diagnosis and management of familial dyslipoproteinemias.",
abstract = "The three major pathways of lipoprotein metabolism provide a superb paradigm to delineate systematically the familial dyslipoproteinemias. Such understanding leads to improved diagnosis and treatment of patients. In the exogenous (intestinal) pathway, defects in LPL, apoC-II, APOA-V, and GPIHBP1 disrupt the catabolism of chylomicrons and hepatic uptake of their remnants, producing very high TG. In the endogenous (hepatic) pathway, six disorders affect the activity of the LDLR and markedly increase LDL. These include FH, FDB, ARH, PCSK9 gain-of-function mutations, sitosterolemia and loss of 7 alpha hydroxylase. Hepatic overproduction of VLDL occurs in FCHL, hyperapoB, LDL subclass pattern B, FDH and syndrome X, often due to insulin resistance and resulting in high TG, elevated small LDL particles and low HDL-C. Defects in APOB-100 and loss-of-function mutations in PCSK9 are associated with low LDL-C, decreased CVD and longevity. An absence of MTP leads to marked reduction in chylomicrons and VLDL, causing abetalipoproteinemia. In the reverse cholesterol pathway, deletions or nonsense mutations in apoA-I or ABCA1 transporter disrupt the formation of the nascent HDL particle. Mutations in LCAT disrupt esterification of cholesterol in nascent HDL by LCAT and apoA-1, and formation of spherical HDL. Mutations in either CETP or SR-B1 and familial high HDL lead to increased large HDL particles, the effect of which on CVD is not resolved. The major goal is to prevent or ameliorate the major complications of many familial dyslipoproteinemias, namely, premature CVD or pancreatitis. Dietary and drug treatment specific for each inherited disorder is reviewed.",
author = "Kwiterovich, {Peter O.}",
year = "2013",
month = "6",
doi = "10.1007/s11886-013-0371-5",
language = "English (US)",
volume = "15",
pages = "371",
journal = "Current Cardiology Reports",
issn = "1523-3782",
publisher = "Current Medicine Group",
number = "6",

}

TY - JOUR

T1 - Diagnosis and management of familial dyslipoproteinemias.

AU - Kwiterovich, Peter O.

PY - 2013/6

Y1 - 2013/6

N2 - The three major pathways of lipoprotein metabolism provide a superb paradigm to delineate systematically the familial dyslipoproteinemias. Such understanding leads to improved diagnosis and treatment of patients. In the exogenous (intestinal) pathway, defects in LPL, apoC-II, APOA-V, and GPIHBP1 disrupt the catabolism of chylomicrons and hepatic uptake of their remnants, producing very high TG. In the endogenous (hepatic) pathway, six disorders affect the activity of the LDLR and markedly increase LDL. These include FH, FDB, ARH, PCSK9 gain-of-function mutations, sitosterolemia and loss of 7 alpha hydroxylase. Hepatic overproduction of VLDL occurs in FCHL, hyperapoB, LDL subclass pattern B, FDH and syndrome X, often due to insulin resistance and resulting in high TG, elevated small LDL particles and low HDL-C. Defects in APOB-100 and loss-of-function mutations in PCSK9 are associated with low LDL-C, decreased CVD and longevity. An absence of MTP leads to marked reduction in chylomicrons and VLDL, causing abetalipoproteinemia. In the reverse cholesterol pathway, deletions or nonsense mutations in apoA-I or ABCA1 transporter disrupt the formation of the nascent HDL particle. Mutations in LCAT disrupt esterification of cholesterol in nascent HDL by LCAT and apoA-1, and formation of spherical HDL. Mutations in either CETP or SR-B1 and familial high HDL lead to increased large HDL particles, the effect of which on CVD is not resolved. The major goal is to prevent or ameliorate the major complications of many familial dyslipoproteinemias, namely, premature CVD or pancreatitis. Dietary and drug treatment specific for each inherited disorder is reviewed.

AB - The three major pathways of lipoprotein metabolism provide a superb paradigm to delineate systematically the familial dyslipoproteinemias. Such understanding leads to improved diagnosis and treatment of patients. In the exogenous (intestinal) pathway, defects in LPL, apoC-II, APOA-V, and GPIHBP1 disrupt the catabolism of chylomicrons and hepatic uptake of their remnants, producing very high TG. In the endogenous (hepatic) pathway, six disorders affect the activity of the LDLR and markedly increase LDL. These include FH, FDB, ARH, PCSK9 gain-of-function mutations, sitosterolemia and loss of 7 alpha hydroxylase. Hepatic overproduction of VLDL occurs in FCHL, hyperapoB, LDL subclass pattern B, FDH and syndrome X, often due to insulin resistance and resulting in high TG, elevated small LDL particles and low HDL-C. Defects in APOB-100 and loss-of-function mutations in PCSK9 are associated with low LDL-C, decreased CVD and longevity. An absence of MTP leads to marked reduction in chylomicrons and VLDL, causing abetalipoproteinemia. In the reverse cholesterol pathway, deletions or nonsense mutations in apoA-I or ABCA1 transporter disrupt the formation of the nascent HDL particle. Mutations in LCAT disrupt esterification of cholesterol in nascent HDL by LCAT and apoA-1, and formation of spherical HDL. Mutations in either CETP or SR-B1 and familial high HDL lead to increased large HDL particles, the effect of which on CVD is not resolved. The major goal is to prevent or ameliorate the major complications of many familial dyslipoproteinemias, namely, premature CVD or pancreatitis. Dietary and drug treatment specific for each inherited disorder is reviewed.

UR - http://www.scopus.com/inward/record.url?scp=84887370759&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84887370759&partnerID=8YFLogxK

U2 - 10.1007/s11886-013-0371-5

DO - 10.1007/s11886-013-0371-5

M3 - Article

C2 - 23666884

AN - SCOPUS:84877103250

VL - 15

SP - 371

JO - Current Cardiology Reports

JF - Current Cardiology Reports

SN - 1523-3782

IS - 6

ER -