Diagnosing covariate balance across levels of right-censoring before and after application of inverse-probability-of-censoring weights

Research output: Contribution to journalArticlepeer-review

Abstract

Covariate balance is a central concept in the potential outcomes literature. With selected populations or missing data, balance across treatment groups can be insufficient for estimating marginal treatment effects. Recently, a framework for using covariate balance to describe measured confounding and selection bias for time-varying and other multivariate exposures in the presence of right-censoring has been proposed. Here, we revisit this framework to consider balance across levels of right-censoring over time in more depth. Specifically, we develop measures of covariate balance that can describe what is known as "dependent censoring" in the literature, along with its associated selection bias, under multiple mechanisms for right censoring. Such measures are interesting because they substantively describe the evolution of dependent censoring mechanisms. Furthermore, we provide weighted versions that can depict how well such dependent censoring has been eliminated when inverse-probability-of-censoring weights are applied. These results provide a conceptually grounded way to inspect covariate balance across levels of right-censoring as a validity check. As a motivating example, we applied these measures to a study of hypothetical "static" and "dynamic" treatment protocols in a sequential multiple-assignment randomized trial of antipsychotics with high dropout rates.

Original languageEnglish (US)
Pages (from-to)2213-2221
Number of pages9
JournalAmerican journal of epidemiology
Volume188
Issue number12
DOIs
StatePublished - Dec 31 2019

Keywords

  • IPCW
  • attrition
  • covariate balance
  • dependent censoring
  • informative censoring
  • inverse-probability-of-censoring weights
  • per-protocol effect
  • selection bias

ASJC Scopus subject areas

  • Epidemiology

Fingerprint Dive into the research topics of 'Diagnosing covariate balance across levels of right-censoring before and after application of inverse-probability-of-censoring weights'. Together they form a unique fingerprint.

Cite this