Development of a human head-neck computational model for assessing blast injury

J. C. Roberts, E. E. Ward, T. P. Harrigan, T. M. Taylor, M. A. Annett, A. C. Merkle

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A finite element model (FEM) of the human head attached to a Hybrid III FEM neck was developed to study the effects of blast loading on the brain. Simulations of blast loading to this Human Head Finite Element Model (HHFEM) were generated by creating a computational fluid dynamics (CFD) model of the HHFEM headform in a shock tube. Three different driver pressure loading conditions from experimental testing of the Human Surrogate Head Model (HSHM) were simulated by this model. The pressure time histories at each grid point of the CFD headform were used as inputs to the HHFEM. Brain/cerebral spinal fluid (CSF) and CSF/skull boundary conditions along with different brain material models were considered. The Kelvin-Maxwell material model and a low friction surface-to-surface interface were found to best replicate conditions seen in experimental testing of the HSHM. Deformations in the anterior and posterior locations of the brain varied from 0.5-0.9 mm and intracranial pressures at those locations were between 32 and 55 kPa.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages95-96
Number of pages2
ISBN (Print)9780791843758
DOIs
StatePublished - 2010
Event2009 ASME International Mechanical Engineering Congress and Exposition, IMECE2009 - Lake Buena Vista, FL, United States
Duration: Nov 13 2009Nov 19 2009

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
Volume2

Conference

Conference2009 ASME International Mechanical Engineering Congress and Exposition, IMECE2009
CountryUnited States
CityLake Buena Vista, FL
Period11/13/0911/19/09

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Development of a human head-neck computational model for assessing blast injury'. Together they form a unique fingerprint.

Cite this