Development and Evaluation of a Fully Automated Molecular Assay Targeting the Mitochondrial Small Subunit rRNA Gene for the Detection of Pneumocystis jirovecii in Bronchoalveolar Lavage Fluid Specimens

Baoming Liu, Marissa Totten, Saman Nematollahi, Kausik Datta, Warda Memon, Subathra Marimuthu, Leslie A. Wolf, Karen C. Carroll, Sean X. Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

The fungal pathogen Pneumocystis jirovecii causes Pneumocystis pneumonia. Although the mitochondrial large subunit rRNA gene (mtLSU) is commonly used as a PCR target, a mitochondrial small subunit rRNA gene (mtSSU)–targeted MultiCode PCR assay was developed on the fully automated ARIES platform for detection of P. jirovecii in bronchoalveolar lavage fluid specimens in 2.5 hours. The assay showed a limit of detection of 800 copies/mL (approximately equal to 22 organisms/mL), with no cross-reactivity with other respiratory pathogens. Compared with the reference Pneumocystis-specific direct fluorescent antibody assay (DFA) and mtLSU-targeted PCR assay, the new assay demonstrated sensitivity of 96.9% (31/32) and specificity of 94.6% (139/147) in detecting P. jirovecii in 180 clinical bronchoalveolar lavage fluid specimens. This assay was concordant with all DFA-positive samples and all but one mtLSU PCR-positive sample, and detected eight positive samples that were negative by DFA and mtLSU PCR. Receiver operating characteristic curve analysis revealed an area under the curve of 0.98 and a threshold cycle (CT) cutoff of 39.1 with sensitivity of 90.9% and specificity of 99.3%. The detection of 39.1 < CT < 40.0 indicates the presence of a low load of the organism and needs further determination of either colonization or probable/possible Pneumocystis pneumonia. Overall, the new assay demonstrates excellent analytical and clinical performance and may be more sensitive than mtLSU PCR target for the detection of P. jirovecii.

Original languageEnglish (US)
Pages (from-to)1482-1493
Number of pages12
JournalJournal of Molecular Diagnostics
Volume22
Issue number12
DOIs
StatePublished - Dec 2020

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Molecular Medicine

Fingerprint

Dive into the research topics of 'Development and Evaluation of a Fully Automated Molecular Assay Targeting the Mitochondrial Small Subunit rRNA Gene for the Detection of Pneumocystis jirovecii in Bronchoalveolar Lavage Fluid Specimens'. Together they form a unique fingerprint.

Cite this