Determining the fate of seeded cells in venous tissue-engineered vascular grafts using serial MRI

Jamie K. Harrington, Halima Chahboune, Jason M. Criscione, Alice Y. Li, Narutoshi Hibino, Tai Yi, Gustavo A. Villalona, Serge Kobsa, Dane Meijas, Daniel R. Duncan, Lesley Devine, Xenophon Papademetri, Toshiharu Shin'oka, Tarek M. Fahmy, Christopher K. Breuer

Research output: Contribution to journalArticlepeer-review

Abstract

A major limitation of tissue engineering research is the lack of noninvasive monitoring techniques for observations of dynamic changes in single tissue-engineered constructs. We use cellular magnetic resonance imaging (MRI) to track the fate of cells seeded onto functional tissue-engineered vascular grafts (TEVGs) through serial imaging. After in vitro optimization, murine macrophages were labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles and seeded onto scaffolds that were surgically implanted as inferior vena cava interposition grafts in SCID/bg mice. Serial MRI showed the transverse relaxation times (T 2) were significantly lower immediately following implantation of USPIO-labeled scaffolds (T 2=44±6.8 vs. 71±10.2 ms) but increased rapidly at 2 h to values identical to control implants seeded with unlabeled macrophages (T 2=63±12 vs. 63±14 ms). This strongly indicates the rapid loss ofseeded cells from the scaffolds, a finding verified using Prussian blue staining for iron containing macrophages on explanted TEVGs. Our results support a novel paradigm where seeded cells are rapidly lost from implanted scaffolds instead of developing into cells of the neovessel, as traditionally thought. Our findings confirm and validate this paradigm shift while demonstrating the first successful application of noninvasive MRI for serial study of cellular-level processes in tissue engineering.

Original languageEnglish (US)
Pages (from-to)4150-4161
Number of pages12
JournalFASEB Journal
Volume25
Issue number12
DOIs
StatePublished - Dec 2011
Externally publishedYes

Keywords

  • Cell tracking
  • Cellular magnetic resonance imaging
  • Ultrasmall superparamagnetic iron oxide nanoparticles

ASJC Scopus subject areas

  • Biochemistry
  • Biotechnology
  • Genetics
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Determining the fate of seeded cells in venous tissue-engineered vascular grafts using serial MRI'. Together they form a unique fingerprint.

Cite this