Determinants of activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and GW1843u89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions

Godefridus J. Peters, Evelien Smitskamp-Wilms, Kees Smid, Herbert M. Pinedo, Gerrit Jansen

Research output: Contribution to journalArticle

Abstract

The cytotoxicity and metabolic effects of two thymidylate synthase (TS) inhibitors, Tomudex (Raltitrexed, ZD1694) and GW1843U89, were studied in WiDr colon cancer cells under four different growth conditions: as standard monolayers and as postconfluent multilayers grown under either high (WiDr, 8.8 μM folic acid) or low (WiDr/F, 1 nM leucovorin) folate conditions. Both GW1843U89 and ZD1694 were 13-15-fold more active against WiDr/F than WiDr cells when cultured as monolayers (IC50s in WiDr/F cells were 0.22 and 0.39 nM, respectively). WiDr cells were markedly less sensitive to the drugs when grown as multilayers (4-15-fold), in contrast to the WiDr/F cells, which were equally sensitive. However, total growth inhibition could not be achieved in WiDr multilayers (concentration causing total growth inhibition > 10,000 nM), whereas in WiDr/F multilayers, it could be achieved at 0.42 nM ZD1694 and 150 nM GW1843U89. Growth conditions markedly affected the TS levels when using different enzyme assays. At nonsaturating substrate concentrations, the catalytic activity of TS was similar in mono- and multilayers grown under high folate conditions but lower in multilayers at saturating concentrations. In cells grown under low folate conditions, TS catalytic activity was 3-6- fold lower in multilayers than in monolayers. This was consistent with a decrease in the number of S-phase cells in multilayers. Western blotting revealed less pronounced (2-3-fold) differences in the TS protein content. Exposure of the cells for 24 h to the drugs increased the TS levels by 4- fold. Because this increase in TS levels might explain the decrease in sensitivity to the TS inhibitors, we measured TS inhibition (TSI) by the drugs in intact cells using the TS in situ assay. GW1843U89 was more active than ZD1694. However, after 4 h of exposure in WiDr/F mono- and multilayers, TSI was in the same range for both drugs [50% TSI (TSI50), 0.5-1.7 nM]. In WiDr cells, the TSI50 for ZD1694, but not GW1843U89, was 10 times higher in the multilayers as compared to the monolayers. Despite the increase in TS protein levels, the extent of TSI was similar or even more pronounced in both cell lines grown as either multi- or monolayers. Because the cells were grown under depleted and folate-rich conditions that may affect folate uptake, we measured folate transport using methotrexate (MTX) as the reference drug for the activity of the reduced folate carrier. MTX uptake was 4-fold lower in multilayers compared to monolayers in both WiDr and WiDr/F cells. Uptake of MTX was 5-fold more effective in WiDr/F cells than in WiDr cells in both mono- and multilayers. In conclusion, the resistance of WiDr multilayers to the novel antifolates ZD1694 and GW1843U89 may be due to the high folate medium concentrations, which may be responsible for impaired drug uptake along with less effective TSI. In contrast, WiDr/F monolayers and multilayers were very sensitive to these antifolates. These effects of folate homeostasis may explain some of the variable results seen in treatment of solid tumors with new antifolate TS inhibitors.

Original languageEnglish (US)
Pages (from-to)5529-5535
Number of pages7
JournalCancer Research
Volume59
Issue number21
StatePublished - Nov 1 1999
Externally publishedYes

Fingerprint

Folic Acid Antagonists
Thymidylate Synthase
Folic Acid
Colonic Neoplasms
Cell Line
Methotrexate
Pharmaceutical Preparations
Growth
raltitrexed
Reduced Folate Carrier Protein
Leucovorin
Enzyme Assays
S Phase

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Determinants of activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and GW1843u89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions. / Peters, Godefridus J.; Smitskamp-Wilms, Evelien; Smid, Kees; Pinedo, Herbert M.; Jansen, Gerrit.

In: Cancer Research, Vol. 59, No. 21, 01.11.1999, p. 5529-5535.

Research output: Contribution to journalArticle

Peters, Godefridus J. ; Smitskamp-Wilms, Evelien ; Smid, Kees ; Pinedo, Herbert M. ; Jansen, Gerrit. / Determinants of activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and GW1843u89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions. In: Cancer Research. 1999 ; Vol. 59, No. 21. pp. 5529-5535.
@article{418542d81215454ca39296f643f0f2d4,
title = "Determinants of activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and GW1843u89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions",
abstract = "The cytotoxicity and metabolic effects of two thymidylate synthase (TS) inhibitors, Tomudex (Raltitrexed, ZD1694) and GW1843U89, were studied in WiDr colon cancer cells under four different growth conditions: as standard monolayers and as postconfluent multilayers grown under either high (WiDr, 8.8 μM folic acid) or low (WiDr/F, 1 nM leucovorin) folate conditions. Both GW1843U89 and ZD1694 were 13-15-fold more active against WiDr/F than WiDr cells when cultured as monolayers (IC50s in WiDr/F cells were 0.22 and 0.39 nM, respectively). WiDr cells were markedly less sensitive to the drugs when grown as multilayers (4-15-fold), in contrast to the WiDr/F cells, which were equally sensitive. However, total growth inhibition could not be achieved in WiDr multilayers (concentration causing total growth inhibition > 10,000 nM), whereas in WiDr/F multilayers, it could be achieved at 0.42 nM ZD1694 and 150 nM GW1843U89. Growth conditions markedly affected the TS levels when using different enzyme assays. At nonsaturating substrate concentrations, the catalytic activity of TS was similar in mono- and multilayers grown under high folate conditions but lower in multilayers at saturating concentrations. In cells grown under low folate conditions, TS catalytic activity was 3-6- fold lower in multilayers than in monolayers. This was consistent with a decrease in the number of S-phase cells in multilayers. Western blotting revealed less pronounced (2-3-fold) differences in the TS protein content. Exposure of the cells for 24 h to the drugs increased the TS levels by 4- fold. Because this increase in TS levels might explain the decrease in sensitivity to the TS inhibitors, we measured TS inhibition (TSI) by the drugs in intact cells using the TS in situ assay. GW1843U89 was more active than ZD1694. However, after 4 h of exposure in WiDr/F mono- and multilayers, TSI was in the same range for both drugs [50{\%} TSI (TSI50), 0.5-1.7 nM]. In WiDr cells, the TSI50 for ZD1694, but not GW1843U89, was 10 times higher in the multilayers as compared to the monolayers. Despite the increase in TS protein levels, the extent of TSI was similar or even more pronounced in both cell lines grown as either multi- or monolayers. Because the cells were grown under depleted and folate-rich conditions that may affect folate uptake, we measured folate transport using methotrexate (MTX) as the reference drug for the activity of the reduced folate carrier. MTX uptake was 4-fold lower in multilayers compared to monolayers in both WiDr and WiDr/F cells. Uptake of MTX was 5-fold more effective in WiDr/F cells than in WiDr cells in both mono- and multilayers. In conclusion, the resistance of WiDr multilayers to the novel antifolates ZD1694 and GW1843U89 may be due to the high folate medium concentrations, which may be responsible for impaired drug uptake along with less effective TSI. In contrast, WiDr/F monolayers and multilayers were very sensitive to these antifolates. These effects of folate homeostasis may explain some of the variable results seen in treatment of solid tumors with new antifolate TS inhibitors.",
author = "Peters, {Godefridus J.} and Evelien Smitskamp-Wilms and Kees Smid and Pinedo, {Herbert M.} and Gerrit Jansen",
year = "1999",
month = "11",
day = "1",
language = "English (US)",
volume = "59",
pages = "5529--5535",
journal = "Journal of Cancer Research",
issn = "0099-7013",
publisher = "American Association for Cancer Research Inc.",
number = "21",

}

TY - JOUR

T1 - Determinants of activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and GW1843u89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions

AU - Peters, Godefridus J.

AU - Smitskamp-Wilms, Evelien

AU - Smid, Kees

AU - Pinedo, Herbert M.

AU - Jansen, Gerrit

PY - 1999/11/1

Y1 - 1999/11/1

N2 - The cytotoxicity and metabolic effects of two thymidylate synthase (TS) inhibitors, Tomudex (Raltitrexed, ZD1694) and GW1843U89, were studied in WiDr colon cancer cells under four different growth conditions: as standard monolayers and as postconfluent multilayers grown under either high (WiDr, 8.8 μM folic acid) or low (WiDr/F, 1 nM leucovorin) folate conditions. Both GW1843U89 and ZD1694 were 13-15-fold more active against WiDr/F than WiDr cells when cultured as monolayers (IC50s in WiDr/F cells were 0.22 and 0.39 nM, respectively). WiDr cells were markedly less sensitive to the drugs when grown as multilayers (4-15-fold), in contrast to the WiDr/F cells, which were equally sensitive. However, total growth inhibition could not be achieved in WiDr multilayers (concentration causing total growth inhibition > 10,000 nM), whereas in WiDr/F multilayers, it could be achieved at 0.42 nM ZD1694 and 150 nM GW1843U89. Growth conditions markedly affected the TS levels when using different enzyme assays. At nonsaturating substrate concentrations, the catalytic activity of TS was similar in mono- and multilayers grown under high folate conditions but lower in multilayers at saturating concentrations. In cells grown under low folate conditions, TS catalytic activity was 3-6- fold lower in multilayers than in monolayers. This was consistent with a decrease in the number of S-phase cells in multilayers. Western blotting revealed less pronounced (2-3-fold) differences in the TS protein content. Exposure of the cells for 24 h to the drugs increased the TS levels by 4- fold. Because this increase in TS levels might explain the decrease in sensitivity to the TS inhibitors, we measured TS inhibition (TSI) by the drugs in intact cells using the TS in situ assay. GW1843U89 was more active than ZD1694. However, after 4 h of exposure in WiDr/F mono- and multilayers, TSI was in the same range for both drugs [50% TSI (TSI50), 0.5-1.7 nM]. In WiDr cells, the TSI50 for ZD1694, but not GW1843U89, was 10 times higher in the multilayers as compared to the monolayers. Despite the increase in TS protein levels, the extent of TSI was similar or even more pronounced in both cell lines grown as either multi- or monolayers. Because the cells were grown under depleted and folate-rich conditions that may affect folate uptake, we measured folate transport using methotrexate (MTX) as the reference drug for the activity of the reduced folate carrier. MTX uptake was 4-fold lower in multilayers compared to monolayers in both WiDr and WiDr/F cells. Uptake of MTX was 5-fold more effective in WiDr/F cells than in WiDr cells in both mono- and multilayers. In conclusion, the resistance of WiDr multilayers to the novel antifolates ZD1694 and GW1843U89 may be due to the high folate medium concentrations, which may be responsible for impaired drug uptake along with less effective TSI. In contrast, WiDr/F monolayers and multilayers were very sensitive to these antifolates. These effects of folate homeostasis may explain some of the variable results seen in treatment of solid tumors with new antifolate TS inhibitors.

AB - The cytotoxicity and metabolic effects of two thymidylate synthase (TS) inhibitors, Tomudex (Raltitrexed, ZD1694) and GW1843U89, were studied in WiDr colon cancer cells under four different growth conditions: as standard monolayers and as postconfluent multilayers grown under either high (WiDr, 8.8 μM folic acid) or low (WiDr/F, 1 nM leucovorin) folate conditions. Both GW1843U89 and ZD1694 were 13-15-fold more active against WiDr/F than WiDr cells when cultured as monolayers (IC50s in WiDr/F cells were 0.22 and 0.39 nM, respectively). WiDr cells were markedly less sensitive to the drugs when grown as multilayers (4-15-fold), in contrast to the WiDr/F cells, which were equally sensitive. However, total growth inhibition could not be achieved in WiDr multilayers (concentration causing total growth inhibition > 10,000 nM), whereas in WiDr/F multilayers, it could be achieved at 0.42 nM ZD1694 and 150 nM GW1843U89. Growth conditions markedly affected the TS levels when using different enzyme assays. At nonsaturating substrate concentrations, the catalytic activity of TS was similar in mono- and multilayers grown under high folate conditions but lower in multilayers at saturating concentrations. In cells grown under low folate conditions, TS catalytic activity was 3-6- fold lower in multilayers than in monolayers. This was consistent with a decrease in the number of S-phase cells in multilayers. Western blotting revealed less pronounced (2-3-fold) differences in the TS protein content. Exposure of the cells for 24 h to the drugs increased the TS levels by 4- fold. Because this increase in TS levels might explain the decrease in sensitivity to the TS inhibitors, we measured TS inhibition (TSI) by the drugs in intact cells using the TS in situ assay. GW1843U89 was more active than ZD1694. However, after 4 h of exposure in WiDr/F mono- and multilayers, TSI was in the same range for both drugs [50% TSI (TSI50), 0.5-1.7 nM]. In WiDr cells, the TSI50 for ZD1694, but not GW1843U89, was 10 times higher in the multilayers as compared to the monolayers. Despite the increase in TS protein levels, the extent of TSI was similar or even more pronounced in both cell lines grown as either multi- or monolayers. Because the cells were grown under depleted and folate-rich conditions that may affect folate uptake, we measured folate transport using methotrexate (MTX) as the reference drug for the activity of the reduced folate carrier. MTX uptake was 4-fold lower in multilayers compared to monolayers in both WiDr and WiDr/F cells. Uptake of MTX was 5-fold more effective in WiDr/F cells than in WiDr cells in both mono- and multilayers. In conclusion, the resistance of WiDr multilayers to the novel antifolates ZD1694 and GW1843U89 may be due to the high folate medium concentrations, which may be responsible for impaired drug uptake along with less effective TSI. In contrast, WiDr/F monolayers and multilayers were very sensitive to these antifolates. These effects of folate homeostasis may explain some of the variable results seen in treatment of solid tumors with new antifolate TS inhibitors.

UR - http://www.scopus.com/inward/record.url?scp=0033229854&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033229854&partnerID=8YFLogxK

M3 - Article

C2 - 10554030

AN - SCOPUS:0033229854

VL - 59

SP - 5529

EP - 5535

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0099-7013

IS - 21

ER -