Design and optimization of simulated light delivery systems for photoacoustic assessment of peripheral nerve injury

Michelle T. Graham, Nicholas Von Guionneau, Sami Tuffaha, Muyinatu A. Lediju Bell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Precise assessment of nerve injury optimizes outcomes after surgical nerve repair. Photoacoustic imaging is a promising technique for this intraoperative assessment, but is challenged by optical scattering which reduces light penetration into nerve tissue. This work investigates custom light delivery methods to enhance optical penetration into nerve tissue using Monte Carlo simulations. Light sources were positioned in four configurations surrounding the nerve using sparse activation patterns that were evenly distributed or clustered. Results indicate that a custom light delivery system with combined radial and lateral trajectory illumination maximize optical penetration into nerve tissue for intraoperative photoacoustic assessment of nerve injury.

Original languageEnglish (US)
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2022
EditorsAlexander A. Oraevsky, Lihong V. Wang
PublisherSPIE
ISBN (Electronic)9781510647916
DOIs
StatePublished - 2022
EventPhotons Plus Ultrasound: Imaging and Sensing 2022 - Virtual, Online
Duration: Feb 20 2022Feb 24 2022

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11960
ISSN (Print)1605-7422

Conference

ConferencePhotons Plus Ultrasound: Imaging and Sensing 2022
CityVirtual, Online
Period2/20/222/24/22

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Design and optimization of simulated light delivery systems for photoacoustic assessment of peripheral nerve injury'. Together they form a unique fingerprint.

Cite this