Descending projections from the inferior colliculus to medial olivocochlear efferents: Mice with normal hearing, early onset hearing loss, and congenital deafness

Kirupa Suthakar, David Kay Ryugo

Research output: Contribution to journalArticle

Abstract

Auditory efferent neurons reside in the brain and innervate the sensory hair cells of the cochlea to modulate incoming acoustic signals. Two groups of efferents have been described in mouse and this report will focus on the medial olivocochlear (MOC) system. Electrophysiological data suggest the MOC efferents function in selective listening by differentially attenuating auditory nerve fiber activity in quiet and noisy conditions. Because speech understanding in noise is impaired in age-related hearing loss, we asked whether pathologic changes in input to MOC neurons from higher centers could be involved. The present study investigated the anatomical nature of descending projections from the inferior colliculus (IC) to MOCs in 3-month old mice with normal hearing, and in 6-month old mice with normal hearing (CBA/CaH), early onset progressive hearing loss (DBA/2), and congenital deafness (homozygous Shaker-2). Anterograde tracers were injected into the IC and retrograde tracers into the cochlea. Electron microscopic analysis of double-labelled tissue confirmed direct synaptic contact from the IC onto MOCs in all cohorts. These labelled terminals are indicative of excitatory neurotransmission because they contain round synaptic vesicles, exhibit asymmetric membrane specializations, and are co-labelled with antibodies against VGlut2, a glutamate transporter. 3D reconstructions of the terminal fields indicate that in normal hearing mice, descending projections from the IC are arranged tonotopically with low frequencies projecting laterally and progressively higher frequencies projecting more medially. Along the mediolateral axis, the projections of DBA/2 mice with acquired high frequency hearing loss were shifted medially towards expected higher frequency projecting regions. Shaker-2 mice with congenital deafness had a much broader spatial projection, revealing abnormalities in the topography of connections. These data suggest that loss in precision of IC directed MOC activation could contribute to impaired signal detection in noise.

Original languageEnglish (US)
JournalHearing Research
DOIs
StateAccepted/In press - Apr 12 2016
Externally publishedYes

Fingerprint

Inferior Colliculi
Deafness
Hearing Loss
Hearing
Cochlea
Noise
High-Frequency Hearing Loss
Efferent Neurons
Amino Acid Transport System X-AG
Cochlear Nerve
Inbred DBA Mouse
Synaptic Vesicles
Nerve Fibers
Acoustics
Synaptic Transmission
Electrons
Neurons
Membranes
Antibodies
Brain

Keywords

  • Deafness
  • Descending
  • Hearing loss
  • Medial olivocochlear efferent
  • Tonotopy

ASJC Scopus subject areas

  • Sensory Systems

Cite this

@article{a3e46f9c073b4f5599ab18c42bb5cd38,
title = "Descending projections from the inferior colliculus to medial olivocochlear efferents: Mice with normal hearing, early onset hearing loss, and congenital deafness",
abstract = "Auditory efferent neurons reside in the brain and innervate the sensory hair cells of the cochlea to modulate incoming acoustic signals. Two groups of efferents have been described in mouse and this report will focus on the medial olivocochlear (MOC) system. Electrophysiological data suggest the MOC efferents function in selective listening by differentially attenuating auditory nerve fiber activity in quiet and noisy conditions. Because speech understanding in noise is impaired in age-related hearing loss, we asked whether pathologic changes in input to MOC neurons from higher centers could be involved. The present study investigated the anatomical nature of descending projections from the inferior colliculus (IC) to MOCs in 3-month old mice with normal hearing, and in 6-month old mice with normal hearing (CBA/CaH), early onset progressive hearing loss (DBA/2), and congenital deafness (homozygous Shaker-2). Anterograde tracers were injected into the IC and retrograde tracers into the cochlea. Electron microscopic analysis of double-labelled tissue confirmed direct synaptic contact from the IC onto MOCs in all cohorts. These labelled terminals are indicative of excitatory neurotransmission because they contain round synaptic vesicles, exhibit asymmetric membrane specializations, and are co-labelled with antibodies against VGlut2, a glutamate transporter. 3D reconstructions of the terminal fields indicate that in normal hearing mice, descending projections from the IC are arranged tonotopically with low frequencies projecting laterally and progressively higher frequencies projecting more medially. Along the mediolateral axis, the projections of DBA/2 mice with acquired high frequency hearing loss were shifted medially towards expected higher frequency projecting regions. Shaker-2 mice with congenital deafness had a much broader spatial projection, revealing abnormalities in the topography of connections. These data suggest that loss in precision of IC directed MOC activation could contribute to impaired signal detection in noise.",
keywords = "Deafness, Descending, Hearing loss, Medial olivocochlear efferent, Tonotopy",
author = "Kirupa Suthakar and Ryugo, {David Kay}",
year = "2016",
month = "4",
day = "12",
doi = "10.1016/j.heares.2016.06.014",
language = "English (US)",
journal = "Hearing Research",
issn = "0378-5955",
publisher = "Elsevier",

}

TY - JOUR

T1 - Descending projections from the inferior colliculus to medial olivocochlear efferents

T2 - Mice with normal hearing, early onset hearing loss, and congenital deafness

AU - Suthakar, Kirupa

AU - Ryugo, David Kay

PY - 2016/4/12

Y1 - 2016/4/12

N2 - Auditory efferent neurons reside in the brain and innervate the sensory hair cells of the cochlea to modulate incoming acoustic signals. Two groups of efferents have been described in mouse and this report will focus on the medial olivocochlear (MOC) system. Electrophysiological data suggest the MOC efferents function in selective listening by differentially attenuating auditory nerve fiber activity in quiet and noisy conditions. Because speech understanding in noise is impaired in age-related hearing loss, we asked whether pathologic changes in input to MOC neurons from higher centers could be involved. The present study investigated the anatomical nature of descending projections from the inferior colliculus (IC) to MOCs in 3-month old mice with normal hearing, and in 6-month old mice with normal hearing (CBA/CaH), early onset progressive hearing loss (DBA/2), and congenital deafness (homozygous Shaker-2). Anterograde tracers were injected into the IC and retrograde tracers into the cochlea. Electron microscopic analysis of double-labelled tissue confirmed direct synaptic contact from the IC onto MOCs in all cohorts. These labelled terminals are indicative of excitatory neurotransmission because they contain round synaptic vesicles, exhibit asymmetric membrane specializations, and are co-labelled with antibodies against VGlut2, a glutamate transporter. 3D reconstructions of the terminal fields indicate that in normal hearing mice, descending projections from the IC are arranged tonotopically with low frequencies projecting laterally and progressively higher frequencies projecting more medially. Along the mediolateral axis, the projections of DBA/2 mice with acquired high frequency hearing loss were shifted medially towards expected higher frequency projecting regions. Shaker-2 mice with congenital deafness had a much broader spatial projection, revealing abnormalities in the topography of connections. These data suggest that loss in precision of IC directed MOC activation could contribute to impaired signal detection in noise.

AB - Auditory efferent neurons reside in the brain and innervate the sensory hair cells of the cochlea to modulate incoming acoustic signals. Two groups of efferents have been described in mouse and this report will focus on the medial olivocochlear (MOC) system. Electrophysiological data suggest the MOC efferents function in selective listening by differentially attenuating auditory nerve fiber activity in quiet and noisy conditions. Because speech understanding in noise is impaired in age-related hearing loss, we asked whether pathologic changes in input to MOC neurons from higher centers could be involved. The present study investigated the anatomical nature of descending projections from the inferior colliculus (IC) to MOCs in 3-month old mice with normal hearing, and in 6-month old mice with normal hearing (CBA/CaH), early onset progressive hearing loss (DBA/2), and congenital deafness (homozygous Shaker-2). Anterograde tracers were injected into the IC and retrograde tracers into the cochlea. Electron microscopic analysis of double-labelled tissue confirmed direct synaptic contact from the IC onto MOCs in all cohorts. These labelled terminals are indicative of excitatory neurotransmission because they contain round synaptic vesicles, exhibit asymmetric membrane specializations, and are co-labelled with antibodies against VGlut2, a glutamate transporter. 3D reconstructions of the terminal fields indicate that in normal hearing mice, descending projections from the IC are arranged tonotopically with low frequencies projecting laterally and progressively higher frequencies projecting more medially. Along the mediolateral axis, the projections of DBA/2 mice with acquired high frequency hearing loss were shifted medially towards expected higher frequency projecting regions. Shaker-2 mice with congenital deafness had a much broader spatial projection, revealing abnormalities in the topography of connections. These data suggest that loss in precision of IC directed MOC activation could contribute to impaired signal detection in noise.

KW - Deafness

KW - Descending

KW - Hearing loss

KW - Medial olivocochlear efferent

KW - Tonotopy

UR - http://www.scopus.com/inward/record.url?scp=84979523682&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84979523682&partnerID=8YFLogxK

U2 - 10.1016/j.heares.2016.06.014

DO - 10.1016/j.heares.2016.06.014

M3 - Article

C2 - 27421755

AN - SCOPUS:84979523682

JO - Hearing Research

JF - Hearing Research

SN - 0378-5955

ER -