Dehydroepiandrosterone administration or Gαq overexpression induces β-catenin/T-cell factor signaling and growth via increasing association of estrogen receptor-β/Dishevelled2 in androgen-independent prostate cancer cells

Xunxian Liu, Julia T. Arnold, Marc R. Blackman

Research output: Contribution to journalArticlepeer-review

Abstract

β-Catenin/T-cell factor signaling (β-CTS) plays multiple critical roles in carcinogenesis and is blocked by androgens in androgen receptor (AR)-responsive prostate cancer (PrCa) cells, primarily via AR sequestration of β-catenin from T-cell factor. Dehydroepiandrosterone (DHEA), often used as an over-the-counter nutritional supplement, is metabolized to androgens and estrogens in humans. The efficacy and safety of unregulated use of DHEA are unclear.We now report that DHEA induces β-CTS via increasing association of estrogen receptor (ER)-β with Dishevelled2 (Dvl2) in AR nonresponsive human PrCa DU145 cells, a line of androgen-independent PrCa (AiPC) cells. The induction is temporal, as assessed by measuring kinetics of the association of ERβ/Dvl2, protein expression of the β-CTS targeted genes, c-Mycandcyclin D1,andcell growth. However, in PC-3 cells, another human AiPC cell line, DHEA exerts no detectible effects, partly due to their lower expression of Gα-subunits and DHEA down-regulation of ERβ/Dvl2 association. When Gαq is overexpressed in PC-3 cells, β-CTS is constitutively induced, including increasing c-Myc and cyclin D1 protein expression. This effect involved increasing associations of Gαq/Dvl2 and ERβ/Dvl2 and promoted cell growth. These activities require ERβ in DU-145 and PC-3 cells because they are blocked by ICI 182-780 treatment inactivating ERβ, small interferingRNAadministration depleting ERβ, or AR overexpression arresting ERβ. These data suggest that novel pathways activating β-CTS play roles in the progression of AiPC. Although DHEA may enhance PrCa cell growth via androgenic or estrogenic pathways, the effects of DHEA administration on clinical prostate function remain to be determined.

Original languageEnglish (US)
Pages (from-to)1428-1440
Number of pages13
JournalEndocrinology
Volume151
Issue number4
DOIs
StatePublished - Apr 2010
Externally publishedYes

ASJC Scopus subject areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'Dehydroepiandrosterone administration or Gαq overexpression induces β-catenin/T-cell factor signaling and growth via increasing association of estrogen receptor-β/Dishevelled2 in androgen-independent prostate cancer cells'. Together they form a unique fingerprint.

Cite this