Deformation field correction for spatial normalization of PET images using a population-derived partial least squares model

Murat Bilgel, Aaron Carass, Susan M. Resnick, Dean F.wong, Jerry L. Prince

Research output: Contribution to journalArticlepeer-review

Abstract

Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet work on anatomically accurate PET-to-PET registration is limited. We present a method for the spatial normalization of PET images that improves their anatomical alignment based on a deformation correction model learned from structural image registration. To generate the model, we first create a population-based PET template with a corresponding structural image template. We register each PET image onto the PET template using deformable registration that consists of an affine step followed by a diffeomorphic mapping. Constraining the affine step to be the same as that obtained from the PET registration, we find the diffeomorphic mapping that will align the structural image with the structural template. We train partial least squares (PLS) regressioluation on 79 subjects shows that our method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations.

Keywords

  • Deformation field
  • PET registration
  • Partial least squares

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Deformation field correction for spatial normalization of PET images using a population-derived partial least squares model'. Together they form a unique fingerprint.

Cite this