Deformable registration of the inflated and deflated lung for cone-beam CT-guided thoracic surgery

Ali Uneri, Sajendra Nithiananthan, Sebastian Schafer, Yoshito Otake, J. Webster Stayman, Gerhard Kleinszig, Marc S. Sussman, Russell H. Taylor, Jerry L. Prince, Jeffrey H. Siewerdsen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Intraoperative cone-beam CT (CBCT) could offer an important advance to thoracic surgeons in directly localizing subpalpable nodules during surgery. An image-guidance system is under development using mobile C-arm CBCT to directly localize tumors in the OR, potentially reducing the cost and logistical burden of conventional preoperative localization and facilitating safer surgery by visualizing critical structures surrounding the surgical target (e.g., pulmonary artery, airways, etc.). To utilize the wealth of preoperative image/planning data and to guide targeting under conditions in which the tumor may not be directly visualized, a deformable registration approach has been developed that geometrically resolves images of the inflated (i.e., inhale or exhale) and deflated states of the lung. This novel technique employs a coarse model-driven approach using lung surface and bronchial airways for fast registration, followed by an image-driven registration using a variant of the Demons algorithm to improve target localization to within ~1 mm. Two approaches to model-driven registration are presented and compared - the first involving point correspondences on the surface of the deflated and inflated lung and the second a mesh evolution approach. Intensity variations (i.e., higher image intensity in the deflated lung) due to expulsion of air from the lungs are accounted for using an a priori lung density modification, and its improvement on the performance of the intensity-driven Demons algorithm is demonstrated. Preliminary results of the combined model-driven and intensity-driven registration process demonstrate accuracy consistent with requirements in minimally invasive thoracic surgery in both target localization and critical structure avoidance.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2012
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
DOIs
StatePublished - May 1 2012
EventMedical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling - San Diego, CA, United States
Duration: Feb 5 2012Feb 7 2012

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume8316
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling
CountryUnited States
CitySan Diego, CA
Period2/5/122/7/12

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Deformable registration of the inflated and deflated lung for cone-beam CT-guided thoracic surgery'. Together they form a unique fingerprint.

  • Cite this

    Uneri, A., Nithiananthan, S., Schafer, S., Otake, Y., Stayman, J. W., Kleinszig, G., Sussman, M. S., Taylor, R. H., Prince, J. L., & Siewerdsen, J. H. (2012). Deformable registration of the inflated and deflated lung for cone-beam CT-guided thoracic surgery. In Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling [831602] (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 8316). https://doi.org/10.1117/12.911440