Deformable registration of CT and cone-beam CT by local CBCT intensity correction

Seyoun Park, William Plishker, Raj Shekhar, Harry Quon, John Wong, Junghoon Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2015
Subtitle of host publicationImage Processing
EditorsMartin A. Styner, Sebastien Ourselin
PublisherSPIE
ISBN (Electronic)9781628415032
DOIs
StatePublished - Jan 1 2015
EventMedical Imaging 2015: Image Processing - Orlando, United States
Duration: Feb 24 2015Feb 26 2015

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9413
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2015: Image Processing
CountryUnited States
CityOrlando
Period2/24/152/26/15

Keywords

  • CBCT
  • deformable registration
  • intensity correction

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Deformable registration of CT and cone-beam CT by local CBCT intensity correction'. Together they form a unique fingerprint.

  • Cite this

    Park, S., Plishker, W., Shekhar, R., Quon, H., Wong, J., & Lee, J. (2015). Deformable registration of CT and cone-beam CT by local CBCT intensity correction. In M. A. Styner, & S. Ourselin (Eds.), Medical Imaging 2015: Image Processing [941333] (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 9413). SPIE. https://doi.org/10.1117/12.2082485