Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus

Joseph Meletiadis, Spyros Pournaras, Emmanuel Roilides, Thomas J. Walsh

Research output: Contribution to journalArticlepeer-review

152 Scopus citations

Abstract

The fractional inhibitory concentration (FIC) index range of 0.5 to 4 that is commonly used to define additivity results in no interactions in most combination studies of antifungal agents. These results may differ from those of in vivo studies, where positive and negative interactions may be observed. We reassessed this in vitro FIC index range based on (i) the experimental variation of the checkerboard technique using multiple replicates, (ii) the ability to correctly determine purely additive self-drug and two-drug antagonistic combinations of amphotericin B (AMB) and voriconazole (VRC), (iii) Monte Carlo simulation analysis, and (iv) in vitro-in vivo correlation using experimental models of invasive pulmonary aspergillosis against the same Aspergillus fumigatus isolate based on visual, spectrophotometric, and colorimetric determinations of FICs after 24 and 48 h of incubation. FICs obtained after 24 h of incubation ranged from 0.5 to 1.25 for the self-drug additive combinations of AMB plus AMB and VRC plus VRC and from 2.25 to 4.25 for the antagonistic combination of AMB plus VRC. Monte Carlo simulation analysis showed that self-drug combinations were correctly classified as additive and that the combination of AMB plus VRC was correctly classified as antagonistic for >85% of the simulated FICs when deviation of the 95% confidence interval (CI) of replicate FICs from the additivity range of 1 to 1.25 was used to assess interactions after 24 h. In vitro-in vivo correlation analysis showed that the 95% CIs of the FICs of the in vivo synergistic combination anidulafungin plus VRC determined after 24 h were lower than 1 and the 95% CIs of the FICs of the in vivo antagonistic combination AMB plus ravuconazole were higher than 1.25. Adequate insight into weak pharmacodynamic interactions with in vivo relevance may be obtained by demonstrating that triplicate FICs at 24 h are outside an inclusive additivity range of 1 to 1.25.

Original languageEnglish (US)
Pages (from-to)602-609
Number of pages8
JournalAntimicrobial agents and chemotherapy
Volume54
Issue number2
DOIs
StatePublished - Feb 2010
Externally publishedYes

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus'. Together they form a unique fingerprint.

Cite this