Deep Residual Learning for Neuroimaging: An application to Predict Progression to Alzheimer’s Disease

For the Alzheimer’s Disease Neuroimaging Initiative

Research output: Contribution to journalArticlepeer-review


This work investigates the suitability of deep residual neural networks (ResNets) for studying neuroimaging data in the specific application of predicting progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD). We focus on predicting the subset of MCI individuals that would progress to AD within three years (progressive MCI) and the subset of MCI individuals that do not progress to AD within this period (stable MCI). This prediction was conducted first as a standard binary classification task by training a ResNet architecture using MCI individuals only, followed by a modified domain transfer learning version that additionally trained on the AD and cognitively normal (CN) individuals. For this modified inter-MCI classification task, the ResNet architecture achieved a significant performance improvement over the classical support vector machine and the stacked autoencoder machine learning frameworks (p < 0.005), numerically better than state-of-the-art performance in predicting progression to AD using structural MRI data alone (> 7% than the second-best performing method) and within 1% of the state-of-the-art performance considering learning using multiple structural modalities as well. The learnt predictive models in this modified classification task showed highly similar peak activations, significant correspondence of which in the medial temporal lobe and other areas could be established with previous reports in AD literature, thus further validating our findings. Our results highlight the possibility of early identification of modifiable risk factors for understanding progression to AD using similar advanced deep learning architectures.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Nov 15 2018
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Deep Residual Learning for Neuroimaging: An application to Predict Progression to Alzheimer’s Disease'. Together they form a unique fingerprint.

Cite this