Deconstructing voltage sensor function and pharmacology in sodium channels

Frank Bosmans, Marie France Martin-Eauclaire, Kenton J. Swartz

Research output: Contribution to journalArticlepeer-review

Abstract

Voltage-activated sodium (Nav) channels are crucial for the generation and propagation of nerve impulses, and as such are widely targeted by toxins and drugs. The four voltage sensors in Nav channels have distinct amino acid sequences, raising fundamental questions about their relative contributions to the function and pharmacology of the channel. Here we use four-fold symmetric voltage-activated potassium (Kv) channels as reporters to examine the contributions of individual S3b-S4 paddle motifs within Nav channel voltage sensors to the kinetics of voltage sensor activation and to forming toxin receptors. Our results uncover binding sites for toxins from tarantula and scorpion venom on each of the four paddle motifs in Nav channels, and reveal how paddle-specific interactions can be used to reshape Nav channel activity. One paddle motif is unique in that it slows voltage sensor activation, and toxins selectively targeting this motif impede Nav channel inactivation. This reporter approach and the principles that emerge will be useful in developing new drugs for treating pain and Nav channelopathies.

Original languageEnglish (US)
Pages (from-to)202-208
Number of pages7
JournalNature
Volume456
Issue number7219
DOIs
StatePublished - Nov 13 2008

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Deconstructing voltage sensor function and pharmacology in sodium channels'. Together they form a unique fingerprint.

Cite this