dbOGAP - An Integrated Bioinformatics Resource for Protein O-GlcNAcylation

Jinlian Wang, Manabu Torii, Hongfang Liu, Gerald Warren Hart, Zhang Zhi Hu

Research output: Contribution to journalArticle

Abstract

Background: Protein O-GlcNAcylation (or O-GlcNAc-ylation) is an O-linked glycosylation involving the transfer of β-N-acetylglucosamine to the hydroxyl group of serine or threonine residues of proteins. Growing evidences suggest that protein O-GlcNAcylation is common and is analogous to phosphorylation in modulating broad ranges of biological processes. However, compared to phosphorylation, the amount of protein O-GlcNAcylation data is relatively limited and its annotation in databases is scarce. Furthermore, a bioinformatics resource for O-GlcNAcylation is lacking, and an O-GlcNAcylation site prediction tool is much needed.Description: We developed a database of O-GlcNAcylated proteins and sites, dbOGAP, primarily based on literature published since O-GlcNAcylation was first described in 1984. The database currently contains ~800 proteins with experimental O-GlcNAcylation information, of which ~61% are of humans, and 172 proteins have a total of ~400 O-GlcNAcylation sites identified. The O-GlcNAcylated proteins are primarily nucleocytoplasmic, including membrane- and non-membrane bounded organelle-associated proteins. The known O-GlcNAcylated proteins exert a broad range of functions including transcriptional regulation, macromolecular complex assembly, intracellular transport, translation, and regulation of cell growth or death. The database also contains ~365 potential O-GlcNAcylated proteins inferred from known O-GlcNAcylated orthologs. Additional annotations, including other protein posttranslational modifications, biological pathways and disease information are integrated into the database. We developed an O-GlcNAcylation site prediction system, OGlcNAcScan, based on Support Vector Machine and trained using protein sequences with known O-GlcNAcylation sites from dbOGAP. The site prediction system achieved an area under ROC curve of 74.3% in five-fold cross-validation. The dbOGAP website was developed to allow for performing search and query on O-GlcNAcylated proteins and associated literature, as well as for browsing by gene names, organisms or pathways, and downloading of the database. Also available from the website, the OGlcNAcScan tool presents a list of predicted O-GlcNAcylation sites for given protein sequences.Conclusions: dbOGAP is the first public bioinformatics resource to allow systematic access to the O-GlcNAcylated proteins, and related functional information and bibliography, as well as to an O-GlcNAcylation site prediction tool. The resource will facilitate research on O-GlcNAcylation and its proteomic identification.

Original languageEnglish (US)
Article number91
JournalBMC Bioinformatics
Volume12
DOIs
StatePublished - Apr 6 2011

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics
  • Structural Biology

Fingerprint Dive into the research topics of 'dbOGAP - An Integrated Bioinformatics Resource for Protein O-GlcNAcylation'. Together they form a unique fingerprint.

  • Cite this