CSF biomarkers and its associations with 18F-AV133 cerebral VMAT2 binding in Parkinson's Disease-A preliminary report

Rui Gao, Guangjian Zhang, Xueqi Chen, Aimin Yang, Gwenn Smith, Dean Foster Wong, Yun Zhou

Research output: Contribution to journalArticle

Abstract

Objective Cerebrospinal fluid (CSF) biomarkers, such as α-synuclein (α-syn), amyloid beta peptide 1-42 (Aβ1-42), phosphorylated tau (181P) (p-tau), and total tau (t-tau), have long been associated with the development of Parkinson disease (PD) and other neurodegenerative diseases. In this investigation, we reported the assessment of CSF biomarkers and their correlations with vesicular monoamine transporter 2 (VMAT2) bindings measured with 18F-9-fluoropropyl-(+)-dihydrotetrabenazine (18F-AV133) that is being developed as a biomarker for PD. We test the hypothesis that monoaminergic degeneration was correlated with CSF biomarker levels in untreated PD patients. Methods The available online data from the Parkinson's Progression Markers Initiative study (PPMI) project were collected and analyzed, which include demographic information, clinical evaluations, CSF biomarkers (α-syn, Aβ1-42, p-tau, and t-tau), 18F-AV133 brain PET, and T1 weighted MRIs. Region of interest (ROI) and voxel-wise Pearson correlation between standardized uptake value ratio (SUVR) and CSF biomarkers were calculated. Results Our major findings are: 1) Compared with controls, CSF α-syn and tau levels decreased significantly in PD; 2) α-syn was closely correlated with Aβ1-42 and tau in PD, especially in early-onset patients; and 3) hypothesis-driven ROI analysis found a significant negative correlation between CSF Aβ1-42 levels and VMAT2 densities in post cingulate, left caudate, left anterior putamen, and left ventral striatum in PDs. CSF t-tau and p-tau levels were significantly negatively related to VMAT2 SUVRs in substantia nigra and left ventral striatum, respectively. Voxel-wise analysis showed that left caudate, parahippocampal gyrus, insula and temporal lobe were negatively correlated with Aβ1-42. In addition, superior frontal gyrus and transverse temporal gyrus were negatively correlated with CSF p-tau levels. Conclusion These results suggest that monoaminergic degeneration in PD is correlated with CSF biomarkers associated with cognitive impairment in neurodegenerative diseases including Alzheimer's disease. The association between loss of dopamine synaptic function and pathologic protein accumulations in PD indicates an important role of CSF biomarkers in PD development.

Original languageEnglish (US)
Article numbere0164762
JournalPLoS One
Volume11
Issue number10
DOIs
StatePublished - Oct 1 2016

Fingerprint

Vesicular Monoamine Transport Proteins
Cerebrospinal fluid
monoamines
Parkinson disease
Biomarkers
cerebrospinal fluid
Parkinson Disease
Cerebrospinal Fluid
transporters
biomarkers
Neurodegenerative diseases
neurodegenerative diseases
Neurodegenerative Diseases
Synucleins
Parahippocampal Gyrus
Auditory Cortex
Putamen
Amyloid beta-Peptides
Parkinsonian Disorders
Substantia Nigra

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

CSF biomarkers and its associations with 18F-AV133 cerebral VMAT2 binding in Parkinson's Disease-A preliminary report. / Gao, Rui; Zhang, Guangjian; Chen, Xueqi; Yang, Aimin; Smith, Gwenn; Wong, Dean Foster; Zhou, Yun.

In: PLoS One, Vol. 11, No. 10, e0164762, 01.10.2016.

Research output: Contribution to journalArticle

@article{356b0cadcc304033b0ce25c79a983e0c,
title = "CSF biomarkers and its associations with 18F-AV133 cerebral VMAT2 binding in Parkinson's Disease-A preliminary report",
abstract = "Objective Cerebrospinal fluid (CSF) biomarkers, such as α-synuclein (α-syn), amyloid beta peptide 1-42 (Aβ1-42), phosphorylated tau (181P) (p-tau), and total tau (t-tau), have long been associated with the development of Parkinson disease (PD) and other neurodegenerative diseases. In this investigation, we reported the assessment of CSF biomarkers and their correlations with vesicular monoamine transporter 2 (VMAT2) bindings measured with 18F-9-fluoropropyl-(+)-dihydrotetrabenazine (18F-AV133) that is being developed as a biomarker for PD. We test the hypothesis that monoaminergic degeneration was correlated with CSF biomarker levels in untreated PD patients. Methods The available online data from the Parkinson's Progression Markers Initiative study (PPMI) project were collected and analyzed, which include demographic information, clinical evaluations, CSF biomarkers (α-syn, Aβ1-42, p-tau, and t-tau), 18F-AV133 brain PET, and T1 weighted MRIs. Region of interest (ROI) and voxel-wise Pearson correlation between standardized uptake value ratio (SUVR) and CSF biomarkers were calculated. Results Our major findings are: 1) Compared with controls, CSF α-syn and tau levels decreased significantly in PD; 2) α-syn was closely correlated with Aβ1-42 and tau in PD, especially in early-onset patients; and 3) hypothesis-driven ROI analysis found a significant negative correlation between CSF Aβ1-42 levels and VMAT2 densities in post cingulate, left caudate, left anterior putamen, and left ventral striatum in PDs. CSF t-tau and p-tau levels were significantly negatively related to VMAT2 SUVRs in substantia nigra and left ventral striatum, respectively. Voxel-wise analysis showed that left caudate, parahippocampal gyrus, insula and temporal lobe were negatively correlated with Aβ1-42. In addition, superior frontal gyrus and transverse temporal gyrus were negatively correlated with CSF p-tau levels. Conclusion These results suggest that monoaminergic degeneration in PD is correlated with CSF biomarkers associated with cognitive impairment in neurodegenerative diseases including Alzheimer's disease. The association between loss of dopamine synaptic function and pathologic protein accumulations in PD indicates an important role of CSF biomarkers in PD development.",
author = "Rui Gao and Guangjian Zhang and Xueqi Chen and Aimin Yang and Gwenn Smith and Wong, {Dean Foster} and Yun Zhou",
year = "2016",
month = "10",
day = "1",
doi = "10.1371/journal.pone.0164762",
language = "English (US)",
volume = "11",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - CSF biomarkers and its associations with 18F-AV133 cerebral VMAT2 binding in Parkinson's Disease-A preliminary report

AU - Gao, Rui

AU - Zhang, Guangjian

AU - Chen, Xueqi

AU - Yang, Aimin

AU - Smith, Gwenn

AU - Wong, Dean Foster

AU - Zhou, Yun

PY - 2016/10/1

Y1 - 2016/10/1

N2 - Objective Cerebrospinal fluid (CSF) biomarkers, such as α-synuclein (α-syn), amyloid beta peptide 1-42 (Aβ1-42), phosphorylated tau (181P) (p-tau), and total tau (t-tau), have long been associated with the development of Parkinson disease (PD) and other neurodegenerative diseases. In this investigation, we reported the assessment of CSF biomarkers and their correlations with vesicular monoamine transporter 2 (VMAT2) bindings measured with 18F-9-fluoropropyl-(+)-dihydrotetrabenazine (18F-AV133) that is being developed as a biomarker for PD. We test the hypothesis that monoaminergic degeneration was correlated with CSF biomarker levels in untreated PD patients. Methods The available online data from the Parkinson's Progression Markers Initiative study (PPMI) project were collected and analyzed, which include demographic information, clinical evaluations, CSF biomarkers (α-syn, Aβ1-42, p-tau, and t-tau), 18F-AV133 brain PET, and T1 weighted MRIs. Region of interest (ROI) and voxel-wise Pearson correlation between standardized uptake value ratio (SUVR) and CSF biomarkers were calculated. Results Our major findings are: 1) Compared with controls, CSF α-syn and tau levels decreased significantly in PD; 2) α-syn was closely correlated with Aβ1-42 and tau in PD, especially in early-onset patients; and 3) hypothesis-driven ROI analysis found a significant negative correlation between CSF Aβ1-42 levels and VMAT2 densities in post cingulate, left caudate, left anterior putamen, and left ventral striatum in PDs. CSF t-tau and p-tau levels were significantly negatively related to VMAT2 SUVRs in substantia nigra and left ventral striatum, respectively. Voxel-wise analysis showed that left caudate, parahippocampal gyrus, insula and temporal lobe were negatively correlated with Aβ1-42. In addition, superior frontal gyrus and transverse temporal gyrus were negatively correlated with CSF p-tau levels. Conclusion These results suggest that monoaminergic degeneration in PD is correlated with CSF biomarkers associated with cognitive impairment in neurodegenerative diseases including Alzheimer's disease. The association between loss of dopamine synaptic function and pathologic protein accumulations in PD indicates an important role of CSF biomarkers in PD development.

AB - Objective Cerebrospinal fluid (CSF) biomarkers, such as α-synuclein (α-syn), amyloid beta peptide 1-42 (Aβ1-42), phosphorylated tau (181P) (p-tau), and total tau (t-tau), have long been associated with the development of Parkinson disease (PD) and other neurodegenerative diseases. In this investigation, we reported the assessment of CSF biomarkers and their correlations with vesicular monoamine transporter 2 (VMAT2) bindings measured with 18F-9-fluoropropyl-(+)-dihydrotetrabenazine (18F-AV133) that is being developed as a biomarker for PD. We test the hypothesis that monoaminergic degeneration was correlated with CSF biomarker levels in untreated PD patients. Methods The available online data from the Parkinson's Progression Markers Initiative study (PPMI) project were collected and analyzed, which include demographic information, clinical evaluations, CSF biomarkers (α-syn, Aβ1-42, p-tau, and t-tau), 18F-AV133 brain PET, and T1 weighted MRIs. Region of interest (ROI) and voxel-wise Pearson correlation between standardized uptake value ratio (SUVR) and CSF biomarkers were calculated. Results Our major findings are: 1) Compared with controls, CSF α-syn and tau levels decreased significantly in PD; 2) α-syn was closely correlated with Aβ1-42 and tau in PD, especially in early-onset patients; and 3) hypothesis-driven ROI analysis found a significant negative correlation between CSF Aβ1-42 levels and VMAT2 densities in post cingulate, left caudate, left anterior putamen, and left ventral striatum in PDs. CSF t-tau and p-tau levels were significantly negatively related to VMAT2 SUVRs in substantia nigra and left ventral striatum, respectively. Voxel-wise analysis showed that left caudate, parahippocampal gyrus, insula and temporal lobe were negatively correlated with Aβ1-42. In addition, superior frontal gyrus and transverse temporal gyrus were negatively correlated with CSF p-tau levels. Conclusion These results suggest that monoaminergic degeneration in PD is correlated with CSF biomarkers associated with cognitive impairment in neurodegenerative diseases including Alzheimer's disease. The association between loss of dopamine synaptic function and pathologic protein accumulations in PD indicates an important role of CSF biomarkers in PD development.

UR - http://www.scopus.com/inward/record.url?scp=84992193865&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84992193865&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0164762

DO - 10.1371/journal.pone.0164762

M3 - Article

VL - 11

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

M1 - e0164762

ER -