Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env

Young Do Kwon, Marie Pancera, Priyamvada Acharya, Ivelin S. Georgiev, Emma T. Crooks, Jason Gorman, M. Gordon Joyce, Miklos Guttman, Xiaochu Ma, Sandeep Narpala, Cinque Soto, Daniel S. Terry, Yongping Yang, Tongqing Zhou, Goran Ahlsen, Robert T. Bailer, Michael Chambers, Gwo Yu Chuang, Nicole A. Doria-Rose, Aliaksandr DruzMark A. Hallen, Adam Harned, Tatsiana Kirys, Mark K. Louder, Sijy O'Dell, Gilad Ofek, Keiko Osawa, Madhu Prabhakaran, Mallika Sastry, Guillaume B.E. Stewart-Jones, Jonathan Stuckey, Paul V. Thomas, Tishina Tittley, Constance Williams, Baoshan Zhang, Hong Zhao, Zhou Zhou, Bruce R. Donald, Lawrence K. Lee, Susan Zolla-Pazner, Ulrich Baxa, Arne Schön, Ernesto Freire, Lawrence Shapiro, Kelly K. Lee, James Arthos, James B. Munro, Scott C. Blanchard, Walther Mothes, James M. Binley, Adrian B. McDermott, John R. Mascola, Peter D. Kwong

Research output: Contribution to journalArticlepeer-review

206 Scopus citations

Abstract

As the sole viral antigen on the HIV-1-virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1-Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.

Original languageEnglish (US)
Pages (from-to)522-531
Number of pages10
JournalNature Structural and Molecular Biology
Volume22
Issue number7
DOIs
StatePublished - Jul 9 2015

ASJC Scopus subject areas

  • Structural Biology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env'. Together they form a unique fingerprint.

Cite this