Cross-link structure affects replication-independent DNA interstrand cross-link repair in mammalian cells

Erica M. Hlavin, Michael B. Smeaton, Anne M. Noronha, Christopher J. Wilds, Paul S. Miller

Research output: Contribution to journalArticlepeer-review


DNA interstrand cross-links (ICLs) are cytotoxic products of common anticancer drugs and cellular metabolic processes, whose mechanism(s) of repair remains poorly understood. In this study, we show that cross-link structure affects ICL repair in nonreplicating reporter plasmids that contain a mispaired N4C-ethyl-N4C (C-C), N3T-ethyl-N3T (T-T), or N1I-ethyl-N3T (I-T) ICL. The T-T and I-T cross-links obstruct the hydrogen bond face of the base and mimic the N1G-ethyl-N3C ICL created by bis-chloroethylnitrosourea, whereas the C-C cross-link does not interfere with base pair formation. Host-cell reactivation (HCR) assays in human and hamster cells showed that repair of these ICLs primarily involves the transcription-coupled nucleotide excision repair (TC-NER) pathway. Repair of the C-C ICL was 5-fold more efficient than repair of the T-T or I-T ICLs, suggesting the latter cross-links hinder lesion bypass following initial ICL unhooking. The level of luciferase expression from plasmids containing a C-C cross-link remnant on either the transcribed or nontranscribed strand increased in NER-deficient cells, indicating NER involvement occurs at a step prior to remnant removal, whereas expression from similar T-T remnant plasmids was inhibited in NER-deficient cells, demonstrating NER is required for remnant removal. Sequence analysis of repaired plasmids showed a high proportion of C residues inserted at the site of the T-T and I-T cross-links, and HCR assays showed that Rev1 was likely responsible for these insertions. In contrast, both C and G residues were inserted at the C-C cross-link site, and Rev1 was not required for repair, suggesting replicative or other translesion polymerases can bypass the C-C remnant.

Original languageEnglish (US)
Pages (from-to)3977-3988
Number of pages12
Issue number18
StatePublished - May 11 2010

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'Cross-link structure affects replication-independent DNA interstrand cross-link repair in mammalian cells'. Together they form a unique fingerprint.

Cite this