Correlation of effects of general anesthetics on somatosensory neurons in the primate thalamus and cortical EEG power

P. M. Dougherty, Y. J. Li, Frederick Lenz, L. Rowland, Scott Harvey Mittman

Research output: Contribution to journalArticle

Abstract

The effects of two types of general anesthetic on the neurophysiological properties of the primate somatosensory thalamus were correlated with effects on frontal cortex electroencephalographic (EEG) power and spectral properties. Graded doses of the intravenous agent methohexital sodium (METH) were studied in 12 cells in three monkeys on a halothane baseline anesthetic. Low doses of METH (0.2-1.0 mg/kg) produced a reduction of EEG power but had no effects on spontaneous or evoked thalamic activity. EEG power showed maximal attenuation after 2.0 mg/kg METH, whereas decreases in thalamic activity were first noted over a similar moderate dose range (2,0-5.0 mg/kg). The physiological parameter most sensitive to METH was the spontaneous activity, which showed initial changes in rate and pattern at moderate doses followed by marked inhibition at higher doses. Finally, the high dose of METH (10.0 mg/kg) produced marked reduction in all neurophysiological parameters with recovery over the following 30-45 min. The effects of the volatile anesthetic halothane were studied on 15 cells in four monkeys anesthetized with pentobarbital sodium. The low dose of halothane (0.25%) produced a facilitation of responses to cutaneous stimuli as well as a decrease in the rate and burst patterns in the spontaneous activity. The power in the EEG was not affected at this concentration. The responses of the cells to the mechanical stimuli at moderate doses (0.5-1.0%) of halothane returned to the baseline magnitude, whereas spontaneous activity remained unaffected compared with initial effects. EEG power was reduced by 1% halothane. Finally, all neurophysiological parameters showed profound reduction at the highest halothane concentrations (2.0-3.0%) with recovery over the next 30-45 min. In conclusion, the two classes of anesthetics most commonly used for acute neurophysiological studies in the primate show well-defined thresholds at which changes in the response properties of thalamic neurons are produced. This threshold for the barbiturates and halothane can be predicted by monitoring of cortical EEG.

Original languageEnglish (US)
Pages (from-to)1375-1392
Number of pages18
JournalJournal of Neurophysiology
Volume77
Issue number3
StatePublished - 1997

Fingerprint

General Anesthetics
Halothane
Methohexital
Thalamus
Primates
Neurons
Anesthetics
Haplorhini
Barbiturates
Frontal Lobe
Pentobarbital
Skin

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

Correlation of effects of general anesthetics on somatosensory neurons in the primate thalamus and cortical EEG power. / Dougherty, P. M.; Li, Y. J.; Lenz, Frederick; Rowland, L.; Mittman, Scott Harvey.

In: Journal of Neurophysiology, Vol. 77, No. 3, 1997, p. 1375-1392.

Research output: Contribution to journalArticle

@article{f3bb38d0f0d544b099c2138aea1fc346,
title = "Correlation of effects of general anesthetics on somatosensory neurons in the primate thalamus and cortical EEG power",
abstract = "The effects of two types of general anesthetic on the neurophysiological properties of the primate somatosensory thalamus were correlated with effects on frontal cortex electroencephalographic (EEG) power and spectral properties. Graded doses of the intravenous agent methohexital sodium (METH) were studied in 12 cells in three monkeys on a halothane baseline anesthetic. Low doses of METH (0.2-1.0 mg/kg) produced a reduction of EEG power but had no effects on spontaneous or evoked thalamic activity. EEG power showed maximal attenuation after 2.0 mg/kg METH, whereas decreases in thalamic activity were first noted over a similar moderate dose range (2,0-5.0 mg/kg). The physiological parameter most sensitive to METH was the spontaneous activity, which showed initial changes in rate and pattern at moderate doses followed by marked inhibition at higher doses. Finally, the high dose of METH (10.0 mg/kg) produced marked reduction in all neurophysiological parameters with recovery over the following 30-45 min. The effects of the volatile anesthetic halothane were studied on 15 cells in four monkeys anesthetized with pentobarbital sodium. The low dose of halothane (0.25{\%}) produced a facilitation of responses to cutaneous stimuli as well as a decrease in the rate and burst patterns in the spontaneous activity. The power in the EEG was not affected at this concentration. The responses of the cells to the mechanical stimuli at moderate doses (0.5-1.0{\%}) of halothane returned to the baseline magnitude, whereas spontaneous activity remained unaffected compared with initial effects. EEG power was reduced by 1{\%} halothane. Finally, all neurophysiological parameters showed profound reduction at the highest halothane concentrations (2.0-3.0{\%}) with recovery over the next 30-45 min. In conclusion, the two classes of anesthetics most commonly used for acute neurophysiological studies in the primate show well-defined thresholds at which changes in the response properties of thalamic neurons are produced. This threshold for the barbiturates and halothane can be predicted by monitoring of cortical EEG.",
author = "Dougherty, {P. M.} and Li, {Y. J.} and Frederick Lenz and L. Rowland and Mittman, {Scott Harvey}",
year = "1997",
language = "English (US)",
volume = "77",
pages = "1375--1392",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Correlation of effects of general anesthetics on somatosensory neurons in the primate thalamus and cortical EEG power

AU - Dougherty, P. M.

AU - Li, Y. J.

AU - Lenz, Frederick

AU - Rowland, L.

AU - Mittman, Scott Harvey

PY - 1997

Y1 - 1997

N2 - The effects of two types of general anesthetic on the neurophysiological properties of the primate somatosensory thalamus were correlated with effects on frontal cortex electroencephalographic (EEG) power and spectral properties. Graded doses of the intravenous agent methohexital sodium (METH) were studied in 12 cells in three monkeys on a halothane baseline anesthetic. Low doses of METH (0.2-1.0 mg/kg) produced a reduction of EEG power but had no effects on spontaneous or evoked thalamic activity. EEG power showed maximal attenuation after 2.0 mg/kg METH, whereas decreases in thalamic activity were first noted over a similar moderate dose range (2,0-5.0 mg/kg). The physiological parameter most sensitive to METH was the spontaneous activity, which showed initial changes in rate and pattern at moderate doses followed by marked inhibition at higher doses. Finally, the high dose of METH (10.0 mg/kg) produced marked reduction in all neurophysiological parameters with recovery over the following 30-45 min. The effects of the volatile anesthetic halothane were studied on 15 cells in four monkeys anesthetized with pentobarbital sodium. The low dose of halothane (0.25%) produced a facilitation of responses to cutaneous stimuli as well as a decrease in the rate and burst patterns in the spontaneous activity. The power in the EEG was not affected at this concentration. The responses of the cells to the mechanical stimuli at moderate doses (0.5-1.0%) of halothane returned to the baseline magnitude, whereas spontaneous activity remained unaffected compared with initial effects. EEG power was reduced by 1% halothane. Finally, all neurophysiological parameters showed profound reduction at the highest halothane concentrations (2.0-3.0%) with recovery over the next 30-45 min. In conclusion, the two classes of anesthetics most commonly used for acute neurophysiological studies in the primate show well-defined thresholds at which changes in the response properties of thalamic neurons are produced. This threshold for the barbiturates and halothane can be predicted by monitoring of cortical EEG.

AB - The effects of two types of general anesthetic on the neurophysiological properties of the primate somatosensory thalamus were correlated with effects on frontal cortex electroencephalographic (EEG) power and spectral properties. Graded doses of the intravenous agent methohexital sodium (METH) were studied in 12 cells in three monkeys on a halothane baseline anesthetic. Low doses of METH (0.2-1.0 mg/kg) produced a reduction of EEG power but had no effects on spontaneous or evoked thalamic activity. EEG power showed maximal attenuation after 2.0 mg/kg METH, whereas decreases in thalamic activity were first noted over a similar moderate dose range (2,0-5.0 mg/kg). The physiological parameter most sensitive to METH was the spontaneous activity, which showed initial changes in rate and pattern at moderate doses followed by marked inhibition at higher doses. Finally, the high dose of METH (10.0 mg/kg) produced marked reduction in all neurophysiological parameters with recovery over the following 30-45 min. The effects of the volatile anesthetic halothane were studied on 15 cells in four monkeys anesthetized with pentobarbital sodium. The low dose of halothane (0.25%) produced a facilitation of responses to cutaneous stimuli as well as a decrease in the rate and burst patterns in the spontaneous activity. The power in the EEG was not affected at this concentration. The responses of the cells to the mechanical stimuli at moderate doses (0.5-1.0%) of halothane returned to the baseline magnitude, whereas spontaneous activity remained unaffected compared with initial effects. EEG power was reduced by 1% halothane. Finally, all neurophysiological parameters showed profound reduction at the highest halothane concentrations (2.0-3.0%) with recovery over the next 30-45 min. In conclusion, the two classes of anesthetics most commonly used for acute neurophysiological studies in the primate show well-defined thresholds at which changes in the response properties of thalamic neurons are produced. This threshold for the barbiturates and halothane can be predicted by monitoring of cortical EEG.

UR - http://www.scopus.com/inward/record.url?scp=0030964963&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030964963&partnerID=8YFLogxK

M3 - Article

C2 - 9084604

AN - SCOPUS:0030964963

VL - 77

SP - 1375

EP - 1392

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 3

ER -