Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells

J. Gao, J. T. Arnold, John Tod Isaacs

Research output: Contribution to journalArticle

Abstract

Normal adult prostate epithelium of both human and rat origin was transplanted with Matrigel into intact or androgen-ablated (i.e., castrated) nude mice. Within these transplants, an influx of mouse mesenchymal cells was one of the earliest events to occur resulting in the development of a collar of smooth muscle cells and fibroblasts surrounding the transplanted epithelium. A subset of these surrounding stromal cells express androgen receptor (AR). The surrounded transplanted epithelium initially expresses high molecular weight cytokeratins characteristic of prostatic basal cells and AR. In both intact and androgen-ablated hosts, this epithelium subsequently develops a patent lumen producing a rudimentary glandular acini. Only in the nonablated hosts, however, do these rudimentary acini undergo a further proliferative growth phase, as determined by Ki67 immunocytochemical stainings and the development of a low molecular weight cytokeratin positive layer of luminal (ie., secretory) epithelial cells. Because AR is expressed in both the donor epithelium and host (i.e., mouse) stromal cells, this androgen-stimulated growth response could involve either autocrine pathways initiated within donor normal adult epithelial cells themselves or paracrine pathways initiated within the AR-expressing subset of mouse stromal cells. To resolve this issue, mice carrying the testicular feminized mutation in the X-linked AR gene were cross-bred to AR-wt nude mice to produce AR-null nude male mice. None of the cells in these AR-null nude male mice express functional AR protein. Therefore, these animals can be used to prevent any possibility of host stromal cell paracrine involvement in initiating an androgen-stimulated growth response when normal adult or malignant prostatic epithelial cells are transplanted into these null hosts. In these AR-null nude male mice, the androgen-stimulated growth of normal adult prostatic epithelial cells did not occur (i.e., androgen-induced growth response of normal prostatic epithelial cells requires stromal cell paracrine involvement). In contrast, using four different prostatic cancer models (i.e., human PC-82, human LNCaP, human LAPC-4, and rat R3327G), the androgen-stimulated growth of prostatic cancer cells occurred identically in both AR-null and AR-wt nude male mice (i.e., a direct autocrine mechanism is responsible for androgen-stimulated growth of malignant prostatic epithelial cells). In summary, a fundamental change in the mechanism for androgen-stimulated growth occurs during the transformation from normal to malignant prostatic epithelial cells.

Original languageEnglish (US)
Pages (from-to)5038-5044
Number of pages7
JournalCancer Research
Volume61
Issue number13
StatePublished - Jul 1 2001

Fingerprint

Androgen Receptors
Androgens
Epithelial Cells
Growth
Nude Mice
Stromal Cells
Epithelium
Keratins
Prostatic Neoplasms
Molecular Weight
Smooth Muscle Myocytes
Prostate
Fibroblasts
Staining and Labeling
Transplants

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. / Gao, J.; Arnold, J. T.; Isaacs, John Tod.

In: Cancer Research, Vol. 61, No. 13, 01.07.2001, p. 5038-5044.

Research output: Contribution to journalArticle

@article{93763e41a3aa4f6ca987e2da3b9b0f58,
title = "Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells",
abstract = "Normal adult prostate epithelium of both human and rat origin was transplanted with Matrigel into intact or androgen-ablated (i.e., castrated) nude mice. Within these transplants, an influx of mouse mesenchymal cells was one of the earliest events to occur resulting in the development of a collar of smooth muscle cells and fibroblasts surrounding the transplanted epithelium. A subset of these surrounding stromal cells express androgen receptor (AR). The surrounded transplanted epithelium initially expresses high molecular weight cytokeratins characteristic of prostatic basal cells and AR. In both intact and androgen-ablated hosts, this epithelium subsequently develops a patent lumen producing a rudimentary glandular acini. Only in the nonablated hosts, however, do these rudimentary acini undergo a further proliferative growth phase, as determined by Ki67 immunocytochemical stainings and the development of a low molecular weight cytokeratin positive layer of luminal (ie., secretory) epithelial cells. Because AR is expressed in both the donor epithelium and host (i.e., mouse) stromal cells, this androgen-stimulated growth response could involve either autocrine pathways initiated within donor normal adult epithelial cells themselves or paracrine pathways initiated within the AR-expressing subset of mouse stromal cells. To resolve this issue, mice carrying the testicular feminized mutation in the X-linked AR gene were cross-bred to AR-wt nude mice to produce AR-null nude male mice. None of the cells in these AR-null nude male mice express functional AR protein. Therefore, these animals can be used to prevent any possibility of host stromal cell paracrine involvement in initiating an androgen-stimulated growth response when normal adult or malignant prostatic epithelial cells are transplanted into these null hosts. In these AR-null nude male mice, the androgen-stimulated growth of normal adult prostatic epithelial cells did not occur (i.e., androgen-induced growth response of normal prostatic epithelial cells requires stromal cell paracrine involvement). In contrast, using four different prostatic cancer models (i.e., human PC-82, human LNCaP, human LAPC-4, and rat R3327G), the androgen-stimulated growth of prostatic cancer cells occurred identically in both AR-null and AR-wt nude male mice (i.e., a direct autocrine mechanism is responsible for androgen-stimulated growth of malignant prostatic epithelial cells). In summary, a fundamental change in the mechanism for androgen-stimulated growth occurs during the transformation from normal to malignant prostatic epithelial cells.",
author = "J. Gao and Arnold, {J. T.} and Isaacs, {John Tod}",
year = "2001",
month = "7",
day = "1",
language = "English (US)",
volume = "61",
pages = "5038--5044",
journal = "Journal of Cancer Research",
issn = "0099-7013",
publisher = "American Association for Cancer Research Inc.",
number = "13",

}

TY - JOUR

T1 - Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells

AU - Gao, J.

AU - Arnold, J. T.

AU - Isaacs, John Tod

PY - 2001/7/1

Y1 - 2001/7/1

N2 - Normal adult prostate epithelium of both human and rat origin was transplanted with Matrigel into intact or androgen-ablated (i.e., castrated) nude mice. Within these transplants, an influx of mouse mesenchymal cells was one of the earliest events to occur resulting in the development of a collar of smooth muscle cells and fibroblasts surrounding the transplanted epithelium. A subset of these surrounding stromal cells express androgen receptor (AR). The surrounded transplanted epithelium initially expresses high molecular weight cytokeratins characteristic of prostatic basal cells and AR. In both intact and androgen-ablated hosts, this epithelium subsequently develops a patent lumen producing a rudimentary glandular acini. Only in the nonablated hosts, however, do these rudimentary acini undergo a further proliferative growth phase, as determined by Ki67 immunocytochemical stainings and the development of a low molecular weight cytokeratin positive layer of luminal (ie., secretory) epithelial cells. Because AR is expressed in both the donor epithelium and host (i.e., mouse) stromal cells, this androgen-stimulated growth response could involve either autocrine pathways initiated within donor normal adult epithelial cells themselves or paracrine pathways initiated within the AR-expressing subset of mouse stromal cells. To resolve this issue, mice carrying the testicular feminized mutation in the X-linked AR gene were cross-bred to AR-wt nude mice to produce AR-null nude male mice. None of the cells in these AR-null nude male mice express functional AR protein. Therefore, these animals can be used to prevent any possibility of host stromal cell paracrine involvement in initiating an androgen-stimulated growth response when normal adult or malignant prostatic epithelial cells are transplanted into these null hosts. In these AR-null nude male mice, the androgen-stimulated growth of normal adult prostatic epithelial cells did not occur (i.e., androgen-induced growth response of normal prostatic epithelial cells requires stromal cell paracrine involvement). In contrast, using four different prostatic cancer models (i.e., human PC-82, human LNCaP, human LAPC-4, and rat R3327G), the androgen-stimulated growth of prostatic cancer cells occurred identically in both AR-null and AR-wt nude male mice (i.e., a direct autocrine mechanism is responsible for androgen-stimulated growth of malignant prostatic epithelial cells). In summary, a fundamental change in the mechanism for androgen-stimulated growth occurs during the transformation from normal to malignant prostatic epithelial cells.

AB - Normal adult prostate epithelium of both human and rat origin was transplanted with Matrigel into intact or androgen-ablated (i.e., castrated) nude mice. Within these transplants, an influx of mouse mesenchymal cells was one of the earliest events to occur resulting in the development of a collar of smooth muscle cells and fibroblasts surrounding the transplanted epithelium. A subset of these surrounding stromal cells express androgen receptor (AR). The surrounded transplanted epithelium initially expresses high molecular weight cytokeratins characteristic of prostatic basal cells and AR. In both intact and androgen-ablated hosts, this epithelium subsequently develops a patent lumen producing a rudimentary glandular acini. Only in the nonablated hosts, however, do these rudimentary acini undergo a further proliferative growth phase, as determined by Ki67 immunocytochemical stainings and the development of a low molecular weight cytokeratin positive layer of luminal (ie., secretory) epithelial cells. Because AR is expressed in both the donor epithelium and host (i.e., mouse) stromal cells, this androgen-stimulated growth response could involve either autocrine pathways initiated within donor normal adult epithelial cells themselves or paracrine pathways initiated within the AR-expressing subset of mouse stromal cells. To resolve this issue, mice carrying the testicular feminized mutation in the X-linked AR gene were cross-bred to AR-wt nude mice to produce AR-null nude male mice. None of the cells in these AR-null nude male mice express functional AR protein. Therefore, these animals can be used to prevent any possibility of host stromal cell paracrine involvement in initiating an androgen-stimulated growth response when normal adult or malignant prostatic epithelial cells are transplanted into these null hosts. In these AR-null nude male mice, the androgen-stimulated growth of normal adult prostatic epithelial cells did not occur (i.e., androgen-induced growth response of normal prostatic epithelial cells requires stromal cell paracrine involvement). In contrast, using four different prostatic cancer models (i.e., human PC-82, human LNCaP, human LAPC-4, and rat R3327G), the androgen-stimulated growth of prostatic cancer cells occurred identically in both AR-null and AR-wt nude male mice (i.e., a direct autocrine mechanism is responsible for androgen-stimulated growth of malignant prostatic epithelial cells). In summary, a fundamental change in the mechanism for androgen-stimulated growth occurs during the transformation from normal to malignant prostatic epithelial cells.

UR - http://www.scopus.com/inward/record.url?scp=0035392953&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035392953&partnerID=8YFLogxK

M3 - Article

C2 - 11431338

AN - SCOPUS:0035392953

VL - 61

SP - 5038

EP - 5044

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0099-7013

IS - 13

ER -