Control of neurogenic competence in mammalian hypothalamic tanycytes

Soo Yeon Yoo, Juhyun Kim, Pin Lyu, Thanh V. Hoang, Alex Ma, Vickie Trinh, Weina Dai, Lizhi Jiang, Patrick Leavey, Leighton Duncan, Jae Kyung Won, Sung Hye Park, Jiang Qian, Solange P. Brown, Seth Blackshaw

Research output: Contribution to journalArticlepeer-review


Hypothalamic tanycytes, radial glial cells that share many features with neuronal progenitors, can generate small numbers of neurons in the postnatal hypothalamus, but the identity of these neurons and the molecular mechanisms that control tanycyte-derived neurogenesis are unknown. In this study, we show that tanycyte-specific disruption of the NFI family of transcription factors (Nfia/b/x) robustly stimulates tanycyte proliferation and tanycyte-derived neurogenesis. Single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analysis reveals that NFI (nuclear factor I) factors repress Sonic hedgehog (Shh) and Wnt signaling in tanycytes and modulation of these pathways blocks proliferation and tanycyte-derived neurogenesis in Nfia/b/x-deficient mice. Nfia/b/x-deficient tanycytes give rise to multiple mediobasal hypothalamic neuronal subtypes that can mature, fire action potentials, receive synaptic inputs, and selectively respond to changes in internal states. These findings identify molecular mechanisms that control tanycyte-derived neurogenesis, which can potentially be targeted to selectively remodel the hypothalamic neural circuitry that controls homeostatic physiological processes.

Original languageEnglish (US)
Article numbereabg3777
JournalScience Advances
Issue number22
StatePublished - May 2021

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Control of neurogenic competence in mammalian hypothalamic tanycytes'. Together they form a unique fingerprint.

Cite this