Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine

Christian Theilacker, Fadie T. Coleman, Simone Mueschenborn, Nicolas Llosa, Martha Grout, Gerald B. Pier

Research output: Contribution to journalArticle

Abstract

Deterioration of lung function in patients with cystic fibrosis (CF) is closely associated with chronic pulmonary infection with mucoid Pseudomonas aeruginosa. The mucoid exopolysaccharide (MEP) from P. aeruginosa has been shown to induce opsonic antibodies in mice that are protective against this chronic infection. MEP-specific opsonic antibodies are also commonly found in the sera of older CF patients lacking detectable P. aeruginosa infection. When used in a human vaccine trial, however, MEP only minimally induced opsonic antibodies. To evaluate whether conjugation of MEP to a carrier protein could improve its immunogenicity, we bound thiolated MEP to keyhole limpet hemocyanin (KLH) by using succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) as a linker. In contrast to the native MEP polymer, the MEP-KLH conjugate vaccine induced high titers of MEP-specific immunoglobulin G (IgG) in C3H-HeN mice and in a rabbit. Sera from mice immunized with MEP-KLH conjugate, but not from animals immunized with comparable doses of native MEP, demonstrated opsonic killing activity. Vaccination with MEP-KLH conjugate induced opsonic antibodies broadly cross-reactive to heterologous mucoid strains of P. aeruginosa. Preexisting nonopsonic antibodies to MEP are found in normal human sera, including young CF patients, and their presence impedes the induction of opsonic antibodies. Induction of nonopsonic antibodies by either intraperitoneal injection of MEP or injection or feeding of the cross-reactive antigen, seaweed alginate, reduced the level of overall IgG elicited by follow-up immunization with the MEP-KLH conjugate. However, the opsonic activity was lower only in the sera of MEP-KLH conjugate-immunized mice with preexisting antibodies induced by MEP but not with antibodies induced by seaweed alginate. Immunization with MEP-KLH elicited a significant proportion of antibodies specific to epitopes involving O-acetate residues, and this subpopulation of antibodies mediated opsonic killing of mucoid P. aeruginosa in vitro. These results indicate that conjugation of MEP to KLH significantly enhances its immunogenicity and the elicitation of opsonic antibodies in mice and rabbits, that the conjugate induces opsonic antibodies in the presence of preexisting nonopsonic antibodies, and that opsonic antibodies to MEP are directed at epitopes that include acetate residues on the uronic acid polymer.

Original languageEnglish (US)
Pages (from-to)3875-3884
Number of pages10
JournalInfection and Immunity
Volume71
Issue number7
DOIs
StatePublished - Jul 1 2003
Externally publishedYes

Fingerprint

Conjugate Vaccines
Antibodies
Pseudomonas aeruginosa
Cystic Fibrosis
Seaweed
alginic acid
Pseudomonas exopolysaccharide
Serum
Epitopes
Immunization
Polymers
Acetates
Immunoglobulin G
Rabbits
Uronic Acids
Pseudomonas Infections
Lung
keyhole-limpet hemocyanin
Inbred C3H Mouse
Infection

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Cite this

Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. / Theilacker, Christian; Coleman, Fadie T.; Mueschenborn, Simone; Llosa, Nicolas; Grout, Martha; Pier, Gerald B.

In: Infection and Immunity, Vol. 71, No. 7, 01.07.2003, p. 3875-3884.

Research output: Contribution to journalArticle

Theilacker, Christian ; Coleman, Fadie T. ; Mueschenborn, Simone ; Llosa, Nicolas ; Grout, Martha ; Pier, Gerald B. / Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. In: Infection and Immunity. 2003 ; Vol. 71, No. 7. pp. 3875-3884.
@article{289dd46fc65f446f869d6831f64495e6,
title = "Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine",
abstract = "Deterioration of lung function in patients with cystic fibrosis (CF) is closely associated with chronic pulmonary infection with mucoid Pseudomonas aeruginosa. The mucoid exopolysaccharide (MEP) from P. aeruginosa has been shown to induce opsonic antibodies in mice that are protective against this chronic infection. MEP-specific opsonic antibodies are also commonly found in the sera of older CF patients lacking detectable P. aeruginosa infection. When used in a human vaccine trial, however, MEP only minimally induced opsonic antibodies. To evaluate whether conjugation of MEP to a carrier protein could improve its immunogenicity, we bound thiolated MEP to keyhole limpet hemocyanin (KLH) by using succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) as a linker. In contrast to the native MEP polymer, the MEP-KLH conjugate vaccine induced high titers of MEP-specific immunoglobulin G (IgG) in C3H-HeN mice and in a rabbit. Sera from mice immunized with MEP-KLH conjugate, but not from animals immunized with comparable doses of native MEP, demonstrated opsonic killing activity. Vaccination with MEP-KLH conjugate induced opsonic antibodies broadly cross-reactive to heterologous mucoid strains of P. aeruginosa. Preexisting nonopsonic antibodies to MEP are found in normal human sera, including young CF patients, and their presence impedes the induction of opsonic antibodies. Induction of nonopsonic antibodies by either intraperitoneal injection of MEP or injection or feeding of the cross-reactive antigen, seaweed alginate, reduced the level of overall IgG elicited by follow-up immunization with the MEP-KLH conjugate. However, the opsonic activity was lower only in the sera of MEP-KLH conjugate-immunized mice with preexisting antibodies induced by MEP but not with antibodies induced by seaweed alginate. Immunization with MEP-KLH elicited a significant proportion of antibodies specific to epitopes involving O-acetate residues, and this subpopulation of antibodies mediated opsonic killing of mucoid P. aeruginosa in vitro. These results indicate that conjugation of MEP to KLH significantly enhances its immunogenicity and the elicitation of opsonic antibodies in mice and rabbits, that the conjugate induces opsonic antibodies in the presence of preexisting nonopsonic antibodies, and that opsonic antibodies to MEP are directed at epitopes that include acetate residues on the uronic acid polymer.",
author = "Christian Theilacker and Coleman, {Fadie T.} and Simone Mueschenborn and Nicolas Llosa and Martha Grout and Pier, {Gerald B.}",
year = "2003",
month = "7",
day = "1",
doi = "10.1128/IAI.71.7.3875-3884.2003",
language = "English (US)",
volume = "71",
pages = "3875--3884",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "7",

}

TY - JOUR

T1 - Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine

AU - Theilacker, Christian

AU - Coleman, Fadie T.

AU - Mueschenborn, Simone

AU - Llosa, Nicolas

AU - Grout, Martha

AU - Pier, Gerald B.

PY - 2003/7/1

Y1 - 2003/7/1

N2 - Deterioration of lung function in patients with cystic fibrosis (CF) is closely associated with chronic pulmonary infection with mucoid Pseudomonas aeruginosa. The mucoid exopolysaccharide (MEP) from P. aeruginosa has been shown to induce opsonic antibodies in mice that are protective against this chronic infection. MEP-specific opsonic antibodies are also commonly found in the sera of older CF patients lacking detectable P. aeruginosa infection. When used in a human vaccine trial, however, MEP only minimally induced opsonic antibodies. To evaluate whether conjugation of MEP to a carrier protein could improve its immunogenicity, we bound thiolated MEP to keyhole limpet hemocyanin (KLH) by using succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) as a linker. In contrast to the native MEP polymer, the MEP-KLH conjugate vaccine induced high titers of MEP-specific immunoglobulin G (IgG) in C3H-HeN mice and in a rabbit. Sera from mice immunized with MEP-KLH conjugate, but not from animals immunized with comparable doses of native MEP, demonstrated opsonic killing activity. Vaccination with MEP-KLH conjugate induced opsonic antibodies broadly cross-reactive to heterologous mucoid strains of P. aeruginosa. Preexisting nonopsonic antibodies to MEP are found in normal human sera, including young CF patients, and their presence impedes the induction of opsonic antibodies. Induction of nonopsonic antibodies by either intraperitoneal injection of MEP or injection or feeding of the cross-reactive antigen, seaweed alginate, reduced the level of overall IgG elicited by follow-up immunization with the MEP-KLH conjugate. However, the opsonic activity was lower only in the sera of MEP-KLH conjugate-immunized mice with preexisting antibodies induced by MEP but not with antibodies induced by seaweed alginate. Immunization with MEP-KLH elicited a significant proportion of antibodies specific to epitopes involving O-acetate residues, and this subpopulation of antibodies mediated opsonic killing of mucoid P. aeruginosa in vitro. These results indicate that conjugation of MEP to KLH significantly enhances its immunogenicity and the elicitation of opsonic antibodies in mice and rabbits, that the conjugate induces opsonic antibodies in the presence of preexisting nonopsonic antibodies, and that opsonic antibodies to MEP are directed at epitopes that include acetate residues on the uronic acid polymer.

AB - Deterioration of lung function in patients with cystic fibrosis (CF) is closely associated with chronic pulmonary infection with mucoid Pseudomonas aeruginosa. The mucoid exopolysaccharide (MEP) from P. aeruginosa has been shown to induce opsonic antibodies in mice that are protective against this chronic infection. MEP-specific opsonic antibodies are also commonly found in the sera of older CF patients lacking detectable P. aeruginosa infection. When used in a human vaccine trial, however, MEP only minimally induced opsonic antibodies. To evaluate whether conjugation of MEP to a carrier protein could improve its immunogenicity, we bound thiolated MEP to keyhole limpet hemocyanin (KLH) by using succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) as a linker. In contrast to the native MEP polymer, the MEP-KLH conjugate vaccine induced high titers of MEP-specific immunoglobulin G (IgG) in C3H-HeN mice and in a rabbit. Sera from mice immunized with MEP-KLH conjugate, but not from animals immunized with comparable doses of native MEP, demonstrated opsonic killing activity. Vaccination with MEP-KLH conjugate induced opsonic antibodies broadly cross-reactive to heterologous mucoid strains of P. aeruginosa. Preexisting nonopsonic antibodies to MEP are found in normal human sera, including young CF patients, and their presence impedes the induction of opsonic antibodies. Induction of nonopsonic antibodies by either intraperitoneal injection of MEP or injection or feeding of the cross-reactive antigen, seaweed alginate, reduced the level of overall IgG elicited by follow-up immunization with the MEP-KLH conjugate. However, the opsonic activity was lower only in the sera of MEP-KLH conjugate-immunized mice with preexisting antibodies induced by MEP but not with antibodies induced by seaweed alginate. Immunization with MEP-KLH elicited a significant proportion of antibodies specific to epitopes involving O-acetate residues, and this subpopulation of antibodies mediated opsonic killing of mucoid P. aeruginosa in vitro. These results indicate that conjugation of MEP to KLH significantly enhances its immunogenicity and the elicitation of opsonic antibodies in mice and rabbits, that the conjugate induces opsonic antibodies in the presence of preexisting nonopsonic antibodies, and that opsonic antibodies to MEP are directed at epitopes that include acetate residues on the uronic acid polymer.

UR - http://www.scopus.com/inward/record.url?scp=0038538285&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038538285&partnerID=8YFLogxK

U2 - 10.1128/IAI.71.7.3875-3884.2003

DO - 10.1128/IAI.71.7.3875-3884.2003

M3 - Article

C2 - 12819072

AN - SCOPUS:0038538285

VL - 71

SP - 3875

EP - 3884

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 7

ER -