Constrained workspace generation for snake-like manipulators with applications to minimally invasive surgery

Ryan J. Murphy, Matthew S. Moses, Michael D.M. Kutzer, Gregory S. Chirikjian, Mehran Armand

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Osteolysis is a debilitating condition that can occur behind the acetabular component of total hip replacements due to wear of the polyethylene liner. Conventional treatment techniques suggest replacing the component, while less-invasive approaches attempt to access and clean the lesion through the screw holes in the component. However, current rigid tools have been shown to access at most 50% of the lesion. Using a recently developed dexterous manipulator, we have adapted a group-theoretic convolution framework to define the manipulator's workspace and its ability to fully explore a lesion. We compared this with the experimental exploration of a printed model of the lesion. This convolution approach successfully contains the experimental results and shows over 98.8% volumetric coverage of a complex lesion. The results suggest this manipulator as a possible solution to accessing much of the area unreachable to the conventional less-invasive technique.

Original languageEnglish (US)
Title of host publication2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Pages5341-5347
Number of pages7
DOIs
StatePublished - Nov 14 2013
Event2013 IEEE International Conference on Robotics and Automation, ICRA 2013 - Karlsruhe, Germany
Duration: May 6 2013May 10 2013

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2013 IEEE International Conference on Robotics and Automation, ICRA 2013
CountryGermany
CityKarlsruhe
Period5/6/135/10/13

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Constrained workspace generation for snake-like manipulators with applications to minimally invasive surgery'. Together they form a unique fingerprint.

Cite this