Connectome pattern alterations with increment of mental fatigue in one-hour driving simulation

Bing Liang Chua, Zhongxiang Dai, Nitish Thakor, Anastasios Bezerianos, Yu Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The importance of understanding mental fatigue can be seen from many studies that started back in past decades. It is only until recent years has mental fatigue been explored through connectivity network analysis using graph theory. Although previous studies have revealed certain properties of the mental fatigue network via graph theory, some of these findings seemingly conflict with one another. The differences in findings could be due to mental fatigue being caused by various factors or being analyzed using different methods. So, in this study, to further understand the functional connectivity of driving fatigue, a weighted and undirected connectivity matrix would be constructed before applying graph theory to identify the biomarker from the network property. To obtain data for analysis, a 64-channel EEG cap was used to record the brain signals of subjects undergoing a one-hour driving simulation. Using the recorded EEG signal, a connectivity matrix was constructed using a synchronous method known as phase lag index (PLI) for the graph theory analysis. Results from this graph theory analysis showed that the synchronous network had increased clustering coefficient and decreased path length with the accumulation of mental fatigue. Furthermore, by calculating clustering coefficient regionally, its results revealed that the significant increase occurred mainly in the parietal and occipital regions of the brain.

Original languageEnglish (US)
Title of host publication2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4355-4358
Number of pages4
ISBN (Electronic)9781509028092
DOIs
StatePublished - Sep 13 2017
Event39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of
Duration: Jul 11 2017Jul 15 2017

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
CountryKorea, Republic of
CityJeju Island
Period7/11/177/15/17

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Connectome pattern alterations with increment of mental fatigue in one-hour driving simulation'. Together they form a unique fingerprint.

Cite this