Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies

Muhammad Ali, Firoz Kabir, Jason J. Thomson, Yinghong Ma, Caihong Qiu, Michael Delannoy, Shahid Y. Khan, S. Amer Riazuddin

Research output: Contribution to journalArticle

Abstract

The ocular lens serves as an excellent system to investigate the intricate details of development and differentiation. Generation of lentoid bodies or lens-like structures using pluripotent stem cells is important for understanding the processes critical for lens morphogenesis and the mechanism of cataractogenesis. We previously reported the generation of peripheral blood mononuclear cell (PBMC)-originated, induced pluripotent stem cells (iPSCs). Here, we report generation of lentoid bodies from human embryonic stem cells (hESCs) and (PBMC)-originated, iPSCs employing the “fried egg” method with brief modifications. The ultrastructure analysis of hESC- and iPSC-derived lentoid bodies identified closely packed lens epithelial- and differentiating fiber-like cells. In addition, we performed RNA sequencing (RNA-Seq) based transcriptome profiling of hESC- and iPSC-derived lentoid bodies at differentiation day 25. Next-generation RNA sequencing (RNA-Seq) of hESC- and iPSC-derived lentoid bodies detected expression (≥0.659 RPKM) of 13,975 and 14,003 genes, respectively. Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies revealed 13,563 (>96%) genes common in both datasets. Among the genes common in both transcriptome datasets, 12,856 (~95%) exhibited a quantitatively similar expression profile. Next, we compared the mouse lens epithelial and fiber cell transcriptomes with hESC- and iPSC-derived lentoid bodies transcriptomes and identified > 96% overlap with lentoid body transcriptomes. In conclusion, we report first-time comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies at differentiation day 25.

Original languageEnglish (US)
Article number18552
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies'. Together they form a unique fingerprint.

  • Cite this