Commensal bacteria stimulate antitumor responses via T cell cross-reactivity

Catherine A. Bessell, Ariel Isser, Jonathan J. Havel, Sangyun Lee, David R. Bell, John W. Hickey, Worarat Chaisawangwong, Joan Glick Bieler, Raghvendra Srivastava, Fengshen Kuo, Tanaya Purohit, Ruhong Zhou, Timothy A. Chan, Jonathan P. Schneck

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Recent studies show gut microbiota modulate antitumor immune responses; one proposed mechanism is cross-reactivity between antigens expressed in commensal bacteria and neoepitopes. We found that T cells targeting an epitope called SVYRYYGL (SVY), expressed in the commensal bacterium Bifidobacterium breve (B. breve), cross-react with a model neoantigen, SIYRYYGL (SIY). Mice lacking B. breve had decreased SVY-reactive T cells compared with B. breve-colonized mice, and the T cell response was transferable by SVY immunization or by cohousing mice without Bifidobacterium with ones colonized with Bifidobacterium. Tumors expressing the model SIY neoantigen also grew faster in mice lacking B. breve compared with Bifidobacterium-colonized animals. B. breve colonization also shaped the SVY-reactive TCR repertoire. Finally, SVY-specific T cells recognized SIY-expressing melanomas in vivo and led to decreased tumor growth and extended survival. Our work demonstrates that commensal bacteria can stimulate antitumor immune responses via cross-reactivity and how bacterial antigens affect the T cell landscape.

Original languageEnglish (US)
Article numbere135597
JournalJCI Insight
Volume5
Issue number8
DOIs
StatePublished - Apr 23 2020

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Commensal bacteria stimulate antitumor responses via T cell cross-reactivity'. Together they form a unique fingerprint.

Cite this