Cognate DNA binding specificity retained after leucine zipper exchange between GCN4 and C/EBP

Peter Agre, Peter F. Johnson, Steven L. McKnight

Research output: Contribution to journalArticlepeer-review

154 Scopus citations

Abstract

Both C/EBP and GCN4 are sequence-specific DNA binding proteins that control gene expression. Recent evidence implicates C/EBP as a transcriptional regulator of genes involved in lipid and carbohydrate metabolism. The C/EBP protein binds avidly to the dyad symmetric sequence 5′-ATTGCGCAAT- 3′; GCN4 regulates the transcription of genes that control amino acid biosynthesis in yeast, and binds avidly to the dyad symmetric sequence 5′-ATGA(G/C)TCAT-3′. Both C/EBP and GCN4 bind DNA via the same structural motif. This motif has been predicted to be bipartite, consisting of a dimerization interface termed the "leucine zipper" and a DNA contact surface termed the "basic region." Specificity of DNA binding has been predicted to be imparted by the basic region. As a test of this hypothesis, recombinant proteins were created wherein the basic regions and leucine zippers of GCN4 and C/EBP were reciprocally exchanged. In both of the recombinant polypeptides, DNA binding specificity is shown to track with the basic region.

Original languageEnglish (US)
Pages (from-to)922-926
Number of pages5
JournalScience
Volume246
Issue number4932
DOIs
StatePublished - 1989

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Cognate DNA binding specificity retained after leucine zipper exchange between GCN4 and C/EBP'. Together they form a unique fingerprint.

Cite this