Classification of MRI under the presence of disease heterogeneity using multi-task learning: Application to bipolar disorder

Xiangyang Wang, Tianhao Zhang, Tiffany M. Chaim, Marcus V. Zanetti, Christos Davatzikos

Research output: Chapter in Book/Report/Conference proceedingChapter

5 Scopus citations

Abstract

Heterogeneity in psychiatric and neurological disorders has undermined our ability to understand the pathophysiology underlying their clinical manifestations. In an effort to better distinguish clinical subtypes, many disorders, such as Bipolar Disorder, have been further sub-categorized into subgroups, albeit with criteria that are not very clear, reproducible and objective. Imaging, along with pattern analysis and classification methods, offers promise for developing objective and quantitative ways for disease subtype categorization. Herein, we develop such a method using learning multiple tasks, assuming that each task corresponds to a disease subtype but that subtypes share some common imaging characteristics, along with having distinct features. In particular, we extend the original SVM method by incorporating the sparsity and the group sparsity techniques to allow simultaneous joint learning for all diagnostic tasks. Experiments on Multi-Task Bipolar Disorder classification demonstrate the advantages of our proposed methods compared to other state-of-art pattern analysis approaches.

Original languageEnglish (US)
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PublisherSpringer Verlag
Pages125-132
Number of pages8
DOIs
StatePublished - 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9349
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Classification of MRI under the presence of disease heterogeneity using multi-task learning: Application to bipolar disorder'. Together they form a unique fingerprint.

Cite this