Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV

Ye V. Liu, Michael J. Massare, Dale L. Barnard, Thomas Kort, Margret Nathan, Lei Wang, Gale Smith

Research output: Contribution to journalArticle

Abstract

SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8. μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4. μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents.

Original languageEnglish (US)
Pages (from-to)6606-6613
Number of pages8
JournalVaccine
Volume29
Issue number38
DOIs
StatePublished - Sep 2 2011

Keywords

  • Baculovirus
  • Influenza
  • Lung virus titer
  • Neutralizing antibody
  • Severe acute respiratory syndrome
  • Virus like particles

ASJC Scopus subject areas

  • Molecular Medicine
  • Immunology and Microbiology(all)
  • veterinary(all)
  • Public Health, Environmental and Occupational Health
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV'. Together they form a unique fingerprint.

  • Cite this