Abstract
Antigen-specific cancer immunotherapy and antiangiogenesis are feasible strategies for cancer therapy because they can potentially treat systemic tumors at multiple sites in the body while discriminating between neoplastic and non-neoplastic cells. We have previously developed a DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus-16 E7 and have found that this vaccine generates strong E7-specific antitumor immunity and antiangiogenic effects in vaccinated mice. In this study, we characterized the domains of CRT to produce E7-specific antitumor immunity and antiangiogenic effects by generating DNA vaccines encoding each of the three domains of CRT (N, P, and C domains) linked to the HPV-16 E7 antigen. We found that C57BL/6 mice vaccinated intradermally with DNA encoding the N domain of CRT (NCRT), the P domain of CRT (PCRT), or the C domain of CRT (CCRT) linked with E7 exhibited significant increases in E7-specific CD8+ T cell precursors and impressive antitumor effects against E7-expressing tumors compared to mice vaccinated with wild-type E7 DNA. In addition, the N domain of CRT also showed antiangiogenic properties that might have contributed to the antitumor effect of NCRT/E7. Thus, the N domain of CRT can be linked to a tumor antigen in a DNA vaccine to generate both antigen-specific immunity and antiangiogenic effects for cancer therapy.
Original language | English (US) |
---|---|
Pages (from-to) | 3864-3874 |
Number of pages | 11 |
Journal | Vaccine |
Volume | 23 |
Issue number | 29 |
DOIs | |
State | Published - May 31 2005 |
Keywords
- CCRT
- Calreticulin
- DNA vaccine
- E7 antigen
- HPV-16
- NCRT
- PCRT
ASJC Scopus subject areas
- Molecular Medicine
- Immunology and Microbiology(all)
- veterinary(all)
- Public Health, Environmental and Occupational Health
- Infectious Diseases