Chapter 15 Cognitive processes underlying reading and writing and their neural substrates

Research output: Contribution to journalArticle

Abstract

There is a convergence of evidence from studies of lesions (and areas of dysfunctional brain tissue) associated with alexia and agraphia and from functional imaging studies of reading and spelling in normal subjects that these complex processes require a network of interacting brain regions, each with a distinct role in reading and/or writing. For example, Fig. 15.5 shows the areas of activation revealed by fMRI during a task that required knowledge of the spellings of words (adapted from Hsieh and Rapp, 2004). The functional imaging data and evidence from stroke patients together suggest some specialization of neural regions for particular cognitive processes underlying these complex tasks of reading and spelling, and that damage to any one of these regions can disrupt reading and/or spelling, albeit in different ways. Fig. 15.6(A), shows the areas of brain that when damaged (as indicated by DWI and/ or conventional MRI or CT) or hypoperfused (as indicated by PWI or PET) result in impaired reading and spelling as reviewed above. Fig. 15.6(B) shows the areas of activation in response to spelling tasks in normal subjects (data from one representative subject shown). Fig. 15.6(C) shows a meta-analysis of areas of activation in response to reading in normal subjects (adapted from Turkeltaub et al., 2002). Together, these studies indicate that at least the following regions are necessary, and perhaps sufficient, for reading and spelling: left PIFG (BA 44), left dorsal lateral prefrontal gyrus (BA 6), left posterior STG (BA 22), and left inferior temporal/fusiform gyrus (BA 37). Although there is striking convergence of data from various methodologies that these areas comprise a network of neural regions involved in reading and spelling, the precise roles of each of these areas are just beginning to be defined.

Original languageEnglish (US)
Pages (from-to)311-322
Number of pages12
JournalHandbook of Clinical Neurology
Volume88
DOIs
StatePublished - 2008

Fingerprint

Reading
Temporal Lobe
Brain
Agraphia
Dyslexia
Meta-Analysis
Stroke
Magnetic Resonance Imaging

ASJC Scopus subject areas

  • Clinical Neurology
  • Neurology

Cite this

@article{f12b993cbdc3468eae028a6b6e7c9926,
title = "Chapter 15 Cognitive processes underlying reading and writing and their neural substrates",
abstract = "There is a convergence of evidence from studies of lesions (and areas of dysfunctional brain tissue) associated with alexia and agraphia and from functional imaging studies of reading and spelling in normal subjects that these complex processes require a network of interacting brain regions, each with a distinct role in reading and/or writing. For example, Fig. 15.5 shows the areas of activation revealed by fMRI during a task that required knowledge of the spellings of words (adapted from Hsieh and Rapp, 2004). The functional imaging data and evidence from stroke patients together suggest some specialization of neural regions for particular cognitive processes underlying these complex tasks of reading and spelling, and that damage to any one of these regions can disrupt reading and/or spelling, albeit in different ways. Fig. 15.6(A), shows the areas of brain that when damaged (as indicated by DWI and/ or conventional MRI or CT) or hypoperfused (as indicated by PWI or PET) result in impaired reading and spelling as reviewed above. Fig. 15.6(B) shows the areas of activation in response to spelling tasks in normal subjects (data from one representative subject shown). Fig. 15.6(C) shows a meta-analysis of areas of activation in response to reading in normal subjects (adapted from Turkeltaub et al., 2002). Together, these studies indicate that at least the following regions are necessary, and perhaps sufficient, for reading and spelling: left PIFG (BA 44), left dorsal lateral prefrontal gyrus (BA 6), left posterior STG (BA 22), and left inferior temporal/fusiform gyrus (BA 37). Although there is striking convergence of data from various methodologies that these areas comprise a network of neural regions involved in reading and spelling, the precise roles of each of these areas are just beginning to be defined.",
author = "Argye Hillis-Trupe",
year = "2008",
doi = "10.1016/S0072-9752(07)88015-8",
language = "English (US)",
volume = "88",
pages = "311--322",
journal = "Handbook of Clinical Neurology",
issn = "0072-9752",
publisher = "Elsevier",

}

TY - JOUR

T1 - Chapter 15 Cognitive processes underlying reading and writing and their neural substrates

AU - Hillis-Trupe, Argye

PY - 2008

Y1 - 2008

N2 - There is a convergence of evidence from studies of lesions (and areas of dysfunctional brain tissue) associated with alexia and agraphia and from functional imaging studies of reading and spelling in normal subjects that these complex processes require a network of interacting brain regions, each with a distinct role in reading and/or writing. For example, Fig. 15.5 shows the areas of activation revealed by fMRI during a task that required knowledge of the spellings of words (adapted from Hsieh and Rapp, 2004). The functional imaging data and evidence from stroke patients together suggest some specialization of neural regions for particular cognitive processes underlying these complex tasks of reading and spelling, and that damage to any one of these regions can disrupt reading and/or spelling, albeit in different ways. Fig. 15.6(A), shows the areas of brain that when damaged (as indicated by DWI and/ or conventional MRI or CT) or hypoperfused (as indicated by PWI or PET) result in impaired reading and spelling as reviewed above. Fig. 15.6(B) shows the areas of activation in response to spelling tasks in normal subjects (data from one representative subject shown). Fig. 15.6(C) shows a meta-analysis of areas of activation in response to reading in normal subjects (adapted from Turkeltaub et al., 2002). Together, these studies indicate that at least the following regions are necessary, and perhaps sufficient, for reading and spelling: left PIFG (BA 44), left dorsal lateral prefrontal gyrus (BA 6), left posterior STG (BA 22), and left inferior temporal/fusiform gyrus (BA 37). Although there is striking convergence of data from various methodologies that these areas comprise a network of neural regions involved in reading and spelling, the precise roles of each of these areas are just beginning to be defined.

AB - There is a convergence of evidence from studies of lesions (and areas of dysfunctional brain tissue) associated with alexia and agraphia and from functional imaging studies of reading and spelling in normal subjects that these complex processes require a network of interacting brain regions, each with a distinct role in reading and/or writing. For example, Fig. 15.5 shows the areas of activation revealed by fMRI during a task that required knowledge of the spellings of words (adapted from Hsieh and Rapp, 2004). The functional imaging data and evidence from stroke patients together suggest some specialization of neural regions for particular cognitive processes underlying these complex tasks of reading and spelling, and that damage to any one of these regions can disrupt reading and/or spelling, albeit in different ways. Fig. 15.6(A), shows the areas of brain that when damaged (as indicated by DWI and/ or conventional MRI or CT) or hypoperfused (as indicated by PWI or PET) result in impaired reading and spelling as reviewed above. Fig. 15.6(B) shows the areas of activation in response to spelling tasks in normal subjects (data from one representative subject shown). Fig. 15.6(C) shows a meta-analysis of areas of activation in response to reading in normal subjects (adapted from Turkeltaub et al., 2002). Together, these studies indicate that at least the following regions are necessary, and perhaps sufficient, for reading and spelling: left PIFG (BA 44), left dorsal lateral prefrontal gyrus (BA 6), left posterior STG (BA 22), and left inferior temporal/fusiform gyrus (BA 37). Although there is striking convergence of data from various methodologies that these areas comprise a network of neural regions involved in reading and spelling, the precise roles of each of these areas are just beginning to be defined.

UR - http://www.scopus.com/inward/record.url?scp=67649382709&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67649382709&partnerID=8YFLogxK

U2 - 10.1016/S0072-9752(07)88015-8

DO - 10.1016/S0072-9752(07)88015-8

M3 - Article

C2 - 18631698

AN - SCOPUS:67649382709

VL - 88

SP - 311

EP - 322

JO - Handbook of Clinical Neurology

JF - Handbook of Clinical Neurology

SN - 0072-9752

ER -