Changes in postural strategy during exercise against perturbation using the balance exercise assist robot: A pilot study

Norihide Itoh, Shigeo Tanabe, Satoshi Hirano, Eiichi Saitoh, Jumpei Kawabata, Daisuke Imoto, Yasuo Mikami, Toshikazu Kubo

Research output: Contribution to journalArticlepeer-review

Abstract

[Purpose] To clarify the changes in postural strategy by evaluating leg joint motion and muscle activity before and after continuous exercise against perturbation using the Balance Exercise Assist Robot (BEAR). [Subjects and Methods] Nine healthy subjects (male 7, female 2; mean age 23 ± 1 years) performed a postural perturbation coping exercise only. In the task, the robot leaned and moved automatically. Participants were instructed to maintain their default upright position and they performed the exercise five times in a row (1 minute/trial). Changes in total movement distance, range of motion of each joint (hip, knee, ankle), and mean activity of each muscle for the first and fifth trials were compared. [Results] The total movement distance of BEAR and range of motion in the hip decreased significantly from the first trial to the last trial. No change in muscle activity was observed in the rectus femoris, biceps femoris, tibialis anterior or gastrocnemius. [Conclusion] The results for exercise against perturbation using BEAR in this study suggest that BEAR may be a promising method to improve the ankle strategy for maintaining a standing posture.

Original languageEnglish (US)
Pages (from-to)16-19
Number of pages4
JournalJournal of Physical Therapy Science
Volume29
Issue number1
DOIs
StatePublished - Jan 1 2017
Externally publishedYes

Keywords

  • Postural balance
  • Rehabilitation
  • Robot

ASJC Scopus subject areas

  • Physical Therapy, Sports Therapy and Rehabilitation

Fingerprint

Dive into the research topics of 'Changes in postural strategy during exercise against perturbation using the balance exercise assist robot: A pilot study'. Together they form a unique fingerprint.

Cite this