Caveolin-3 is a sensitive and specific marker for rhabdomyosarcoma

Samson W. Fine, Michael P. Lisanti, Pedram Argani, Maomi Li

Research output: Contribution to journalArticle

Abstract

Caveolin-3 (Cav-3) is a principal structural protein of caveolae membrane domains. Animal studies have revealed that Cav-3 is expressed in skeletal and cardiac myocytes but absent in other types of cells. Recent studies have shown that abnormalities in the Cav-3 gene are associated with some forms of muscular dystrophy, while skeletal muscle abnormalities have been observed in Cav-3 transgenic and knockout mice. In this study the authors evaluated the distribution of Cav-3 in normal human tissues and compared the expression of Cav-3 with that of myogenin and myoD1 in rhabdomyosarcoma (RMS), malignant mixed mullerian tumor (MMMT), and an array of neoplasms that mimic RMS to assess the utility of Cav-3 as a diagnostic marker for tumors with skeletal muscle differentiation. In nonneoplastic human tissues, crisp membrane staining for Cav-3 was present in cardiac and skeletal myocytes and occasionally in arterial smooth muscle cells and prostatic stromal cells, while other cell types were negative for Cav-3. Eighty-eight percent (21/24) of RMS studied were positive for Cav-3. Positive staining was generally observed in the more maturely differentiated tumor cells but not the primitive tumor cells. Eight of nine cases of MMMT stained strongly with Cav-3 in their rhabdomyosarcomatous component but not in other components. Fifty-four other neoplasms (13 leiomyosarcomas, 8 neuroblastomas, 5 lymphomas, 6 Wilms tumors without skeletal muscle differentiation, 5 Ewing sarcomas, 4 malignant fibrous histiocytomas, 4 angiosarcomas, 6 malignant melanomas, and 3 synovial sarcomas) were negative for Cav-3 expression. Nearly all (96% [23/24]) cases of RMS were positive for myogenin, while 88% (21/24) were positive for myoD1. Primitive tumor cells showed significantly increased expression of myoD1 and myogenin; conversely, more differentiated tumor cells were negative or weakly stained. The rhabdomyosarcomatous component of MMMT stained focally with myogenin and myoD1, in contrast to the strong Cav-3 labeling in these cells. These results demonstrate that Cav-3 is specifically expressed in human cardiac and skeletal myocytes. Furthermore, its high specificity and relatively high sensitivity (88%) for tumors with skeletal muscle differentiation suggest that Cav-3 is a valuable marker for these tumors and may be used to assess the degree of differentiation of RMS and to identify residual tumor cells in post-chemotherapy specimens.

Original languageEnglish (US)
Pages (from-to)231-236
Number of pages6
JournalApplied Immunohistochemistry and Molecular Morphology
Volume13
Issue number3
DOIs
StatePublished - Sep 2005

Fingerprint

Caveolin 3
Rhabdomyosarcoma
Myogenin
Malignant Mixed Tumor
Skeletal Muscle Fibers
Skeletal Muscle
Neoplasms
Cardiac Myocytes
Tumor Biomarkers
Staining and Labeling
Synovial Sarcoma
Caveolae
Malignant Fibrous Histiocytoma
Hemangiosarcoma
Ewing's Sarcoma
Wilms Tumor
Leiomyosarcoma

Keywords

  • Caveolin-3
  • myoD1
  • Myogenin
  • Rhabdomyosarcoma
  • Skeletal muscle

ASJC Scopus subject areas

  • Anatomy
  • Medical Laboratory Technology

Cite this

Caveolin-3 is a sensitive and specific marker for rhabdomyosarcoma. / Fine, Samson W.; Lisanti, Michael P.; Argani, Pedram; Li, Maomi.

In: Applied Immunohistochemistry and Molecular Morphology, Vol. 13, No. 3, 09.2005, p. 231-236.

Research output: Contribution to journalArticle

Fine, Samson W. ; Lisanti, Michael P. ; Argani, Pedram ; Li, Maomi. / Caveolin-3 is a sensitive and specific marker for rhabdomyosarcoma. In: Applied Immunohistochemistry and Molecular Morphology. 2005 ; Vol. 13, No. 3. pp. 231-236.
@article{aa32979846ad45aebce603dd719f90ca,
title = "Caveolin-3 is a sensitive and specific marker for rhabdomyosarcoma",
abstract = "Caveolin-3 (Cav-3) is a principal structural protein of caveolae membrane domains. Animal studies have revealed that Cav-3 is expressed in skeletal and cardiac myocytes but absent in other types of cells. Recent studies have shown that abnormalities in the Cav-3 gene are associated with some forms of muscular dystrophy, while skeletal muscle abnormalities have been observed in Cav-3 transgenic and knockout mice. In this study the authors evaluated the distribution of Cav-3 in normal human tissues and compared the expression of Cav-3 with that of myogenin and myoD1 in rhabdomyosarcoma (RMS), malignant mixed mullerian tumor (MMMT), and an array of neoplasms that mimic RMS to assess the utility of Cav-3 as a diagnostic marker for tumors with skeletal muscle differentiation. In nonneoplastic human tissues, crisp membrane staining for Cav-3 was present in cardiac and skeletal myocytes and occasionally in arterial smooth muscle cells and prostatic stromal cells, while other cell types were negative for Cav-3. Eighty-eight percent (21/24) of RMS studied were positive for Cav-3. Positive staining was generally observed in the more maturely differentiated tumor cells but not the primitive tumor cells. Eight of nine cases of MMMT stained strongly with Cav-3 in their rhabdomyosarcomatous component but not in other components. Fifty-four other neoplasms (13 leiomyosarcomas, 8 neuroblastomas, 5 lymphomas, 6 Wilms tumors without skeletal muscle differentiation, 5 Ewing sarcomas, 4 malignant fibrous histiocytomas, 4 angiosarcomas, 6 malignant melanomas, and 3 synovial sarcomas) were negative for Cav-3 expression. Nearly all (96{\%} [23/24]) cases of RMS were positive for myogenin, while 88{\%} (21/24) were positive for myoD1. Primitive tumor cells showed significantly increased expression of myoD1 and myogenin; conversely, more differentiated tumor cells were negative or weakly stained. The rhabdomyosarcomatous component of MMMT stained focally with myogenin and myoD1, in contrast to the strong Cav-3 labeling in these cells. These results demonstrate that Cav-3 is specifically expressed in human cardiac and skeletal myocytes. Furthermore, its high specificity and relatively high sensitivity (88{\%}) for tumors with skeletal muscle differentiation suggest that Cav-3 is a valuable marker for these tumors and may be used to assess the degree of differentiation of RMS and to identify residual tumor cells in post-chemotherapy specimens.",
keywords = "Caveolin-3, myoD1, Myogenin, Rhabdomyosarcoma, Skeletal muscle",
author = "Fine, {Samson W.} and Lisanti, {Michael P.} and Pedram Argani and Maomi Li",
year = "2005",
month = "9",
doi = "10.1097/00129039-200509000-00003",
language = "English (US)",
volume = "13",
pages = "231--236",
journal = "Applied Immunohistochemistry and Molecular Morphology",
issn = "1541-2016",
publisher = "Lippincott Williams and Wilkins",
number = "3",

}

TY - JOUR

T1 - Caveolin-3 is a sensitive and specific marker for rhabdomyosarcoma

AU - Fine, Samson W.

AU - Lisanti, Michael P.

AU - Argani, Pedram

AU - Li, Maomi

PY - 2005/9

Y1 - 2005/9

N2 - Caveolin-3 (Cav-3) is a principal structural protein of caveolae membrane domains. Animal studies have revealed that Cav-3 is expressed in skeletal and cardiac myocytes but absent in other types of cells. Recent studies have shown that abnormalities in the Cav-3 gene are associated with some forms of muscular dystrophy, while skeletal muscle abnormalities have been observed in Cav-3 transgenic and knockout mice. In this study the authors evaluated the distribution of Cav-3 in normal human tissues and compared the expression of Cav-3 with that of myogenin and myoD1 in rhabdomyosarcoma (RMS), malignant mixed mullerian tumor (MMMT), and an array of neoplasms that mimic RMS to assess the utility of Cav-3 as a diagnostic marker for tumors with skeletal muscle differentiation. In nonneoplastic human tissues, crisp membrane staining for Cav-3 was present in cardiac and skeletal myocytes and occasionally in arterial smooth muscle cells and prostatic stromal cells, while other cell types were negative for Cav-3. Eighty-eight percent (21/24) of RMS studied were positive for Cav-3. Positive staining was generally observed in the more maturely differentiated tumor cells but not the primitive tumor cells. Eight of nine cases of MMMT stained strongly with Cav-3 in their rhabdomyosarcomatous component but not in other components. Fifty-four other neoplasms (13 leiomyosarcomas, 8 neuroblastomas, 5 lymphomas, 6 Wilms tumors without skeletal muscle differentiation, 5 Ewing sarcomas, 4 malignant fibrous histiocytomas, 4 angiosarcomas, 6 malignant melanomas, and 3 synovial sarcomas) were negative for Cav-3 expression. Nearly all (96% [23/24]) cases of RMS were positive for myogenin, while 88% (21/24) were positive for myoD1. Primitive tumor cells showed significantly increased expression of myoD1 and myogenin; conversely, more differentiated tumor cells were negative or weakly stained. The rhabdomyosarcomatous component of MMMT stained focally with myogenin and myoD1, in contrast to the strong Cav-3 labeling in these cells. These results demonstrate that Cav-3 is specifically expressed in human cardiac and skeletal myocytes. Furthermore, its high specificity and relatively high sensitivity (88%) for tumors with skeletal muscle differentiation suggest that Cav-3 is a valuable marker for these tumors and may be used to assess the degree of differentiation of RMS and to identify residual tumor cells in post-chemotherapy specimens.

AB - Caveolin-3 (Cav-3) is a principal structural protein of caveolae membrane domains. Animal studies have revealed that Cav-3 is expressed in skeletal and cardiac myocytes but absent in other types of cells. Recent studies have shown that abnormalities in the Cav-3 gene are associated with some forms of muscular dystrophy, while skeletal muscle abnormalities have been observed in Cav-3 transgenic and knockout mice. In this study the authors evaluated the distribution of Cav-3 in normal human tissues and compared the expression of Cav-3 with that of myogenin and myoD1 in rhabdomyosarcoma (RMS), malignant mixed mullerian tumor (MMMT), and an array of neoplasms that mimic RMS to assess the utility of Cav-3 as a diagnostic marker for tumors with skeletal muscle differentiation. In nonneoplastic human tissues, crisp membrane staining for Cav-3 was present in cardiac and skeletal myocytes and occasionally in arterial smooth muscle cells and prostatic stromal cells, while other cell types were negative for Cav-3. Eighty-eight percent (21/24) of RMS studied were positive for Cav-3. Positive staining was generally observed in the more maturely differentiated tumor cells but not the primitive tumor cells. Eight of nine cases of MMMT stained strongly with Cav-3 in their rhabdomyosarcomatous component but not in other components. Fifty-four other neoplasms (13 leiomyosarcomas, 8 neuroblastomas, 5 lymphomas, 6 Wilms tumors without skeletal muscle differentiation, 5 Ewing sarcomas, 4 malignant fibrous histiocytomas, 4 angiosarcomas, 6 malignant melanomas, and 3 synovial sarcomas) were negative for Cav-3 expression. Nearly all (96% [23/24]) cases of RMS were positive for myogenin, while 88% (21/24) were positive for myoD1. Primitive tumor cells showed significantly increased expression of myoD1 and myogenin; conversely, more differentiated tumor cells were negative or weakly stained. The rhabdomyosarcomatous component of MMMT stained focally with myogenin and myoD1, in contrast to the strong Cav-3 labeling in these cells. These results demonstrate that Cav-3 is specifically expressed in human cardiac and skeletal myocytes. Furthermore, its high specificity and relatively high sensitivity (88%) for tumors with skeletal muscle differentiation suggest that Cav-3 is a valuable marker for these tumors and may be used to assess the degree of differentiation of RMS and to identify residual tumor cells in post-chemotherapy specimens.

KW - Caveolin-3

KW - myoD1

KW - Myogenin

KW - Rhabdomyosarcoma

KW - Skeletal muscle

UR - http://www.scopus.com/inward/record.url?scp=23944462875&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=23944462875&partnerID=8YFLogxK

U2 - 10.1097/00129039-200509000-00003

DO - 10.1097/00129039-200509000-00003

M3 - Article

VL - 13

SP - 231

EP - 236

JO - Applied Immunohistochemistry and Molecular Morphology

JF - Applied Immunohistochemistry and Molecular Morphology

SN - 1541-2016

IS - 3

ER -