Catalytic roles for carbon-oxygen hydrogen bonding in SET domain lysine methyltransferases

Jean François Couture, Glenn Hauk, Mark J. Thompson, G. Michael Blackburn, Raymond C. Trievel

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

SET domain enzymes represent a distinct family of protein lysine methyltransferases in eukaryotes. Recent studies have yielded significant insights into the structural basis of substrate recognition and the product specificities of these enzymes. However, the mechanism by which SET domain methyltransferases catalyze the transfer of the methyl group from S-adenosyl-L-methionine to the lysine ε-amine has remained unresolved. To elucidate this mechanism, we have determined the structures of the plant SET domain enzyme, pea ribulose-1,5 bisphosphate carboxylase/oxygenase large subunit methyltransferase, bound to S-adenosyl-L-methionine, and its non-reactive analogs Aza-adenosyl-L-methionine and Sinefungin, and characterized the binding of these ligands to a homolog of the enzyme. The structural and biochemical data collectively reveal that S-adenosyl-L-methionine is selectively recognized through carbon-oxygen hydrogen bonds between the cofactor's methyl group and an array of structurally conserved oxygens that comprise the methyl transfer pore in the active site. Furthermore, the structure of the enzyme co-crystallized with the product ε-N-trimethyllysine reveals a trigonal array of carbon-oxygen interactions between the ε-ammonium methyl groups and the oxygens in the pore. Taken together, these results establish a central role for carbon-oxygen hydrogen bonding in aligning the cofactor's methyl group for transfer to the lysine ε-amine and in coordinating the methyl groups after transfer to facilitate multiple rounds of lysine methylation.

Original languageEnglish (US)
Pages (from-to)19280-19287
Number of pages8
JournalJournal of Biological Chemistry
Volume281
Issue number28
DOIs
StatePublished - Jul 14 2006
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Catalytic roles for carbon-oxygen hydrogen bonding in SET domain lysine methyltransferases'. Together they form a unique fingerprint.

Cite this