Capillarity-assisted fabrication of nanostructures using a less permeable mold for nanotribological applications

Kahp Y. Suh, Hoon Eui Jeong, Deok Ho Kim, R. Arvind Singh, Eui Sung Yoon

Research output: Contribution to journalArticlepeer-review

Abstract

A simple kinetic model is presented to describe the capillary rise of a thin polymer film into a less permeable polyurethane acrylate mold. In this model, capillarity is explained by the competition between capillary and hydrodynamic forces in the course of pattern formation. For a less permeable mold, it was found that the capillary rise increases linearly with time. In addition, the contribution of viscosity and film thickness disappears such that the kinetics is solely governed by the permeation kinetics and capillary force. The present model would be useful to describe the evolution of molded nanostructures when a less permeable mold material other than polydimethylsiloxane is used for the patterning. Moreover, nanostructures with different tip shapes (rounded or dimpled) were observed depending on the fabrication temperature. The structures were tested for potential nanotribological applications such as reduction in adhesive and friction forces.

Original languageEnglish (US)
Article number034303
JournalJournal of Applied Physics
Volume100
Issue number3
DOIs
StatePublished - 2006

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Capillarity-assisted fabrication of nanostructures using a less permeable mold for nanotribological applications'. Together they form a unique fingerprint.

Cite this