C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape

Sharadha Dayalan Naidu, Aki Muramatsu, Ryota Saito, Soichiro Asami, Tadashi Honda, Tomonori Hosoya, Ken Itoh, Masayuki Yamamoto, Takafumi Suzuki, Albena T. Dinkova-Kostova

Research output: Contribution to journalArticle

Abstract

Numerous small molecules (termed inducers), many of which are electrophiles, upregulate cytoprotective responses and inhibit pro-inflammatory pathways by activating nuclear factor-erythroid 2 p45-related factor 2 (NRF2). Key to NRF2 activation is the ability to chemically modifying critical sensor cysteines in the main negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), of which C151, C273 and C288 are best characterized. This study aimed to establish the requirement for these cysteine sensor(s) for the biological activities of the most potent NRF2 activators known to date, the cyclic cyanoenones, some of which are in clinical trials. It was found that C151 in KEAP1 is the main cysteine sensor for this class of inducers, irrespective of molecular size or shape. Furthermore, in primary macrophage cells expressing C151S mutant KEAP1, at low concentrations, the tricyclic cyanoenone TBE-31 is inactive as an activator of NRF2 as well as an inhibitor of lipopolysaccharide-stimulated gene expression of the pro-inflammatory cytokines IL6 and IL1β. However, at high inducer concentrations, NRF2 activation proceeds in the absence of C151, albeit at a lower magnitude. Our findings highlight the intrinsic flexibility of KEAP1 and emphasize the critical importance of establishing the precise dose of NRF2 activators for maintaining on-target selectivity.

Original languageEnglish (US)
Article number8037
JournalScientific Reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018

Fingerprint

Cysteine
Lipopolysaccharides
Interleukin-6
Up-Regulation
Macrophages
Clinical Trials
Cytokines
Gene Expression
Kelch-Like ECH-Associated Protein 1

ASJC Scopus subject areas

  • General

Cite this

Dayalan Naidu, S., Muramatsu, A., Saito, R., Asami, S., Honda, T., Hosoya, T., ... Dinkova-Kostova, A. T. (2018). C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Scientific Reports, 8(1), [8037]. https://doi.org/10.1038/s41598-018-26269-9

C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. / Dayalan Naidu, Sharadha; Muramatsu, Aki; Saito, Ryota; Asami, Soichiro; Honda, Tadashi; Hosoya, Tomonori; Itoh, Ken; Yamamoto, Masayuki; Suzuki, Takafumi; Dinkova-Kostova, Albena T.

In: Scientific Reports, Vol. 8, No. 1, 8037, 01.12.2018.

Research output: Contribution to journalArticle

Dayalan Naidu, S, Muramatsu, A, Saito, R, Asami, S, Honda, T, Hosoya, T, Itoh, K, Yamamoto, M, Suzuki, T & Dinkova-Kostova, AT 2018, 'C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape', Scientific Reports, vol. 8, no. 1, 8037. https://doi.org/10.1038/s41598-018-26269-9
Dayalan Naidu, Sharadha ; Muramatsu, Aki ; Saito, Ryota ; Asami, Soichiro ; Honda, Tadashi ; Hosoya, Tomonori ; Itoh, Ken ; Yamamoto, Masayuki ; Suzuki, Takafumi ; Dinkova-Kostova, Albena T. / C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. In: Scientific Reports. 2018 ; Vol. 8, No. 1.
@article{ef381e2661e34de8a851cbe174726d6b,
title = "C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape",
abstract = "Numerous small molecules (termed inducers), many of which are electrophiles, upregulate cytoprotective responses and inhibit pro-inflammatory pathways by activating nuclear factor-erythroid 2 p45-related factor 2 (NRF2). Key to NRF2 activation is the ability to chemically modifying critical sensor cysteines in the main negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), of which C151, C273 and C288 are best characterized. This study aimed to establish the requirement for these cysteine sensor(s) for the biological activities of the most potent NRF2 activators known to date, the cyclic cyanoenones, some of which are in clinical trials. It was found that C151 in KEAP1 is the main cysteine sensor for this class of inducers, irrespective of molecular size or shape. Furthermore, in primary macrophage cells expressing C151S mutant KEAP1, at low concentrations, the tricyclic cyanoenone TBE-31 is inactive as an activator of NRF2 as well as an inhibitor of lipopolysaccharide-stimulated gene expression of the pro-inflammatory cytokines IL6 and IL1β. However, at high inducer concentrations, NRF2 activation proceeds in the absence of C151, albeit at a lower magnitude. Our findings highlight the intrinsic flexibility of KEAP1 and emphasize the critical importance of establishing the precise dose of NRF2 activators for maintaining on-target selectivity.",
author = "{Dayalan Naidu}, Sharadha and Aki Muramatsu and Ryota Saito and Soichiro Asami and Tadashi Honda and Tomonori Hosoya and Ken Itoh and Masayuki Yamamoto and Takafumi Suzuki and Dinkova-Kostova, {Albena T.}",
year = "2018",
month = "12",
day = "1",
doi = "10.1038/s41598-018-26269-9",
language = "English (US)",
volume = "8",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape

AU - Dayalan Naidu, Sharadha

AU - Muramatsu, Aki

AU - Saito, Ryota

AU - Asami, Soichiro

AU - Honda, Tadashi

AU - Hosoya, Tomonori

AU - Itoh, Ken

AU - Yamamoto, Masayuki

AU - Suzuki, Takafumi

AU - Dinkova-Kostova, Albena T.

PY - 2018/12/1

Y1 - 2018/12/1

N2 - Numerous small molecules (termed inducers), many of which are electrophiles, upregulate cytoprotective responses and inhibit pro-inflammatory pathways by activating nuclear factor-erythroid 2 p45-related factor 2 (NRF2). Key to NRF2 activation is the ability to chemically modifying critical sensor cysteines in the main negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), of which C151, C273 and C288 are best characterized. This study aimed to establish the requirement for these cysteine sensor(s) for the biological activities of the most potent NRF2 activators known to date, the cyclic cyanoenones, some of which are in clinical trials. It was found that C151 in KEAP1 is the main cysteine sensor for this class of inducers, irrespective of molecular size or shape. Furthermore, in primary macrophage cells expressing C151S mutant KEAP1, at low concentrations, the tricyclic cyanoenone TBE-31 is inactive as an activator of NRF2 as well as an inhibitor of lipopolysaccharide-stimulated gene expression of the pro-inflammatory cytokines IL6 and IL1β. However, at high inducer concentrations, NRF2 activation proceeds in the absence of C151, albeit at a lower magnitude. Our findings highlight the intrinsic flexibility of KEAP1 and emphasize the critical importance of establishing the precise dose of NRF2 activators for maintaining on-target selectivity.

AB - Numerous small molecules (termed inducers), many of which are electrophiles, upregulate cytoprotective responses and inhibit pro-inflammatory pathways by activating nuclear factor-erythroid 2 p45-related factor 2 (NRF2). Key to NRF2 activation is the ability to chemically modifying critical sensor cysteines in the main negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), of which C151, C273 and C288 are best characterized. This study aimed to establish the requirement for these cysteine sensor(s) for the biological activities of the most potent NRF2 activators known to date, the cyclic cyanoenones, some of which are in clinical trials. It was found that C151 in KEAP1 is the main cysteine sensor for this class of inducers, irrespective of molecular size or shape. Furthermore, in primary macrophage cells expressing C151S mutant KEAP1, at low concentrations, the tricyclic cyanoenone TBE-31 is inactive as an activator of NRF2 as well as an inhibitor of lipopolysaccharide-stimulated gene expression of the pro-inflammatory cytokines IL6 and IL1β. However, at high inducer concentrations, NRF2 activation proceeds in the absence of C151, albeit at a lower magnitude. Our findings highlight the intrinsic flexibility of KEAP1 and emphasize the critical importance of establishing the precise dose of NRF2 activators for maintaining on-target selectivity.

UR - http://www.scopus.com/inward/record.url?scp=85047533917&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047533917&partnerID=8YFLogxK

U2 - 10.1038/s41598-018-26269-9

DO - 10.1038/s41598-018-26269-9

M3 - Article

VL - 8

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 8037

ER -