Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier

Dennis J. Grab, George Perides, J. Stephen Dumler, Kee Jun Kim, Jinho Park, Yuri V. Kim, Olga Nikolskaia, Kyoung Seong Choi, Monique F. Stins, Kwang Sik Kim

Research output: Contribution to journalArticle

Abstract

Neurological manifestations of Lyme disease in humans are attributed in part to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) by Borrelia burgdorferi. However, how the spirochetes cross the BBB remains an unresolved issue. We examined the traversal of B. burgdorferi across the human BBB and systemic endothelial cell barriers using in vitro model systems constructed of human brain microvascular endothelial cells (BMEC) and EA.hy 926, a human umbilical vein endothelial cell (HUVEC) line grown on Costar Transwell inserts. These studies showed that B. burgdorferi differentially crosses human BMEC and HUVEC and that the human BMEC form a barrier to traversal. During the transmigration by the spirochetes, it was found that the integrity of the endothelial cell monolayers was maintained, as assessed by transendothelial electrical resistance measurements at the end of the experimental period, and that B. burgdorferi appeared to bind human BMEC by their tips near or at cell borders, suggesting a paracellular route of transmigration. Importantly, traversal of B. burgdorferi across human BMEC induces the expression of plasminogen activators, plasminogen activator receptors, and matrix metalloproteinases. Thus, the fibrinolytic system linked by an activation cascade may lead to focal and transient degradation of tight junction proteins that allows B. burgdorferi to invade the CNS.

Original languageEnglish (US)
Pages (from-to)1014-1022
Number of pages9
JournalInfection and immunity
Volume73
Issue number2
DOIs
StatePublished - Feb 2005

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier'. Together they form a unique fingerprint.

  • Cite this

    Grab, D. J., Perides, G., Dumler, J. S., Kim, K. J., Park, J., Kim, Y. V., Nikolskaia, O., Choi, K. S., Stins, M. F., & Kim, K. S. (2005). Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infection and immunity, 73(2), 1014-1022. https://doi.org/10.1128/IAI.73.2.1014-1022.2005