Borna disease virus infection of the neonatal rat

developmental brain injury model of autism spectrum disorders.

Mikhail Pletnikov, Timothy H Moran, Kathryn M. Carbone

Research output: Contribution to journalArticle

Abstract

Autism spectrum disorders (ASD) have been the focus of a great deal of research and clinical speculation. This intense interest relates to both the perplexing pathogenesis and devastating consequences of these disorders. One of the obstacles to understanding the pathogenesis of autism and its efficient treatment has been the paucity of animal models that could be used for hypotheses-driven mechanistic studies of abnormal brain and behavior development and for the pre-clinical testing novel pharmacological treatments. The present review provides a detailed analysis of a new animal model of ASD. This model utilizes neonatal Borna disease virus (BDV) infection of the rat brain as a unique experimental teratogen to study the pathogenesis of neurodevelopmental damage. For more than a decade, studies of the BDV animal model have yielded much insight into the pathogenic processes of abnormal brain development and resulting autistic-like behavioral abnormalities in rats. The most recent experiments demonstrate the utility of the BDV model for studying the pathophysiological mechanisms of the gene-environment interaction that determines differential disease outcomes and variability in responses to treatments.

Original languageEnglish (US)
JournalFrontiers in bioscience : a journal and virtual library
Volume7
StatePublished - 2002

Fingerprint

Borna disease virus
Brain models
Virus Diseases
Viruses
Brain Injuries
Rats
Animal Models
Infant, Newborn, Diseases
Brain
Animals
Teratogens
Gene-Environment Interaction
Autistic Disorder
Pharmacology
Research
Genes
Autism Spectrum Disorder
Testing

Cite this

@article{52642c6c5e0a45bd93f76467d54c0a32,
title = "Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders.",
abstract = "Autism spectrum disorders (ASD) have been the focus of a great deal of research and clinical speculation. This intense interest relates to both the perplexing pathogenesis and devastating consequences of these disorders. One of the obstacles to understanding the pathogenesis of autism and its efficient treatment has been the paucity of animal models that could be used for hypotheses-driven mechanistic studies of abnormal brain and behavior development and for the pre-clinical testing novel pharmacological treatments. The present review provides a detailed analysis of a new animal model of ASD. This model utilizes neonatal Borna disease virus (BDV) infection of the rat brain as a unique experimental teratogen to study the pathogenesis of neurodevelopmental damage. For more than a decade, studies of the BDV animal model have yielded much insight into the pathogenic processes of abnormal brain development and resulting autistic-like behavioral abnormalities in rats. The most recent experiments demonstrate the utility of the BDV model for studying the pathophysiological mechanisms of the gene-environment interaction that determines differential disease outcomes and variability in responses to treatments.",
author = "Mikhail Pletnikov and Moran, {Timothy H} and Carbone, {Kathryn M.}",
year = "2002",
language = "English (US)",
volume = "7",
journal = "Frontiers in Bioscience - Landmark",
issn = "1093-9946",
publisher = "Frontiers in Bioscience",

}

TY - JOUR

T1 - Borna disease virus infection of the neonatal rat

T2 - developmental brain injury model of autism spectrum disorders.

AU - Pletnikov, Mikhail

AU - Moran, Timothy H

AU - Carbone, Kathryn M.

PY - 2002

Y1 - 2002

N2 - Autism spectrum disorders (ASD) have been the focus of a great deal of research and clinical speculation. This intense interest relates to both the perplexing pathogenesis and devastating consequences of these disorders. One of the obstacles to understanding the pathogenesis of autism and its efficient treatment has been the paucity of animal models that could be used for hypotheses-driven mechanistic studies of abnormal brain and behavior development and for the pre-clinical testing novel pharmacological treatments. The present review provides a detailed analysis of a new animal model of ASD. This model utilizes neonatal Borna disease virus (BDV) infection of the rat brain as a unique experimental teratogen to study the pathogenesis of neurodevelopmental damage. For more than a decade, studies of the BDV animal model have yielded much insight into the pathogenic processes of abnormal brain development and resulting autistic-like behavioral abnormalities in rats. The most recent experiments demonstrate the utility of the BDV model for studying the pathophysiological mechanisms of the gene-environment interaction that determines differential disease outcomes and variability in responses to treatments.

AB - Autism spectrum disorders (ASD) have been the focus of a great deal of research and clinical speculation. This intense interest relates to both the perplexing pathogenesis and devastating consequences of these disorders. One of the obstacles to understanding the pathogenesis of autism and its efficient treatment has been the paucity of animal models that could be used for hypotheses-driven mechanistic studies of abnormal brain and behavior development and for the pre-clinical testing novel pharmacological treatments. The present review provides a detailed analysis of a new animal model of ASD. This model utilizes neonatal Borna disease virus (BDV) infection of the rat brain as a unique experimental teratogen to study the pathogenesis of neurodevelopmental damage. For more than a decade, studies of the BDV animal model have yielded much insight into the pathogenic processes of abnormal brain development and resulting autistic-like behavioral abnormalities in rats. The most recent experiments demonstrate the utility of the BDV model for studying the pathophysiological mechanisms of the gene-environment interaction that determines differential disease outcomes and variability in responses to treatments.

UR - http://www.scopus.com/inward/record.url?scp=0036511307&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036511307&partnerID=8YFLogxK

M3 - Article

VL - 7

JO - Frontiers in Bioscience - Landmark

JF - Frontiers in Bioscience - Landmark

SN - 1093-9946

ER -