Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction

Deepak A. Deshpande, Wayne C.H. Wang, Elizabeth L. McIlmoyle, Kathryn S. Robinett, Rachel M. Schillinger, Steven S. An, James S.K. Sham, Stephen B. Liggett

Research output: Contribution to journalArticlepeer-review

Abstract

Bitter taste receptors (TAS2Rs) on the tongue probably evolved to evoke signals for avoiding ingestion of plant toxins. We found expression of TAS2Rs on human airway smooth muscle (ASM) and considered these to be avoidance receptors for inhalants that, when activated, lead to ASM contraction and bronchospasm. TAS2R agonists such as saccharin, chloroquine and denatonium evoked increased intracellular calcium ([Ca2+]i) in ASM in a Gβ2γ3, phospholipase Cβ 2 (PLCβ 2)-and inositol trisphosphate (IP 3) receptor-dependent manner, which would be expected to evoke contraction. Paradoxically, bitter tastants caused relaxation of isolated ASM and dilation of airways that was threefold greater than that elicited by β 2-adrenergic receptor agonists. The relaxation induced by TAS2Rs is associated with a localized [Ca2+] i response at the cell membrane, which opens large-conductance Ca2+-activated K+ (BKCa) channels, leading to ASM membrane hyperpolarization. Inhaled bitter tastants decreased airway obstruction in a mouse model of asthma. Given the need for efficacious bronchodilators for treating obstructive lung diseases, this pathway can be exploited for therapy with the thousands of known synthetic and naturally occurring bitter tastants.

Original languageEnglish (US)
Pages (from-to)1299-1304
Number of pages6
JournalNature medicine
Volume16
Issue number11
DOIs
StatePublished - Nov 2010

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction'. Together they form a unique fingerprint.

Cite this