TY - JOUR
T1 - Biomechanics of the human posterior sclera
T2 - Age- and glaucoma-related changes measured using inflation testing
AU - Coudrillier, Baptiste
AU - Tian, Jing
AU - Alexander, Stephen
AU - Myers, Kristin M.
AU - Quigley, Harry A.
AU - Nguyen, Thao D.
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/4
Y1 - 2012/4
N2 - Purpose. The objective of this study was to measure the biomechanical response of the human posterior sclera in vitro and to estimate the effects of age and glaucoma. Methods. Scleral specimens from 22 donors with no history of glaucoma and 11 donors with a history of glaucoma were excised 3 mm posterior to the equator and affixed to an inflation chamber. Optic nerve cross-sections were graded to determine the presence of axon loss. The time-dependent inflation response was measured in a series of pressure-controlled load-unload tests to 30 mm Hg and creep tests to 15 and 30 mm Hg. Circumferential and meridional strains were computed from the digital image correlation displacements, and midposterior stresses were determined from pressure and deformed geometry. Results. Among normal specimens, older age was predictive of a stiffer response and a thinner sclera. In the age group 75 to 93, diagnosed glaucoma eyes with axon damage were thicker than normal eyes. Both damaged and undamaged glaucoma eyes had a different strain response in the peripapillary sclera characterized by a stiffer meridional response. Undamaged glaucoma eyes had slower circumferential creep rates in the peripapillary sclera than normal eyes. Glaucoma eyes were not different from normal eyes in stresses and strains in the midposterior sclera. Conclusions. The observed differences in the biomechanical response of normal and glaucoma sclera may represent baseline properties that contribute to axon damage, or may be characteristics that result from glaucomatous disease.
AB - Purpose. The objective of this study was to measure the biomechanical response of the human posterior sclera in vitro and to estimate the effects of age and glaucoma. Methods. Scleral specimens from 22 donors with no history of glaucoma and 11 donors with a history of glaucoma were excised 3 mm posterior to the equator and affixed to an inflation chamber. Optic nerve cross-sections were graded to determine the presence of axon loss. The time-dependent inflation response was measured in a series of pressure-controlled load-unload tests to 30 mm Hg and creep tests to 15 and 30 mm Hg. Circumferential and meridional strains were computed from the digital image correlation displacements, and midposterior stresses were determined from pressure and deformed geometry. Results. Among normal specimens, older age was predictive of a stiffer response and a thinner sclera. In the age group 75 to 93, diagnosed glaucoma eyes with axon damage were thicker than normal eyes. Both damaged and undamaged glaucoma eyes had a different strain response in the peripapillary sclera characterized by a stiffer meridional response. Undamaged glaucoma eyes had slower circumferential creep rates in the peripapillary sclera than normal eyes. Glaucoma eyes were not different from normal eyes in stresses and strains in the midposterior sclera. Conclusions. The observed differences in the biomechanical response of normal and glaucoma sclera may represent baseline properties that contribute to axon damage, or may be characteristics that result from glaucomatous disease.
UR - http://www.scopus.com/inward/record.url?scp=84859396267&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859396267&partnerID=8YFLogxK
U2 - 10.1167/iovs.11-8009
DO - 10.1167/iovs.11-8009
M3 - Article
C2 - 22395883
AN - SCOPUS:84859396267
VL - 53
SP - 1714
EP - 1728
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
SN - 0146-0404
IS - 4
ER -